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Preface

The original intent of this effort was to produce a fractional

order sensor for use in monitoring structural vibrations. As the work

progressed it was expandad to include analog simulation and proof-ot-

concept for fractional-order feedback. This goal was achieved.

Incorporating fractional-order circuits into active feedback control

systems will provide many advantages for controls engineers.

Many thanks to my advisor, Lt Col Ron Bagley. I don't know if I

can ever thank you for your patience, understanding and commitment.

Dr. Torvik, thank you for insulating me from the repercussions that

could have been there for not finishing on time. Thank you, Maj Kolesar

for your comments on the A/D recorder. It was the key to our success.

To members of my family (the Fischer clan) and Emmanuel Lutheran

Church, thanks for your prayers and support. Special thanks to Wil

Schonscheck for weekly putting life into proper perspective.

To my wife and kids: Nita, your patience, encouragement and love

were there when I needed them most. Nathan and Katie, teenagers

deserve more than a dad whose nose is buried in a book except when

telling you to clean your room and wash dishes. Josh and Gabe - Daddy

will finally be able to play soccer with you again.

Finally, the real credit belongs to Jesus Christ who's given me all

I have and sees me through the trials - even though at times the

battles seem overwhelming. Through Him, the final victory's ours.
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LIST OF SYMBOLS USED

A - Amplitude of a sinsuoidal function
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ij - (-1) ; used interchangeably depending on the the background
source of the expression
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n - Excess minority carrier densityp

no - Excess minority carrier density at equilibrium
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- Ratio of fluid velocity to fluid density; fractional-order
power in continued-fraction development

r - Offset of inverse Laplace integration path from the imaginary
axis

F( ) - Gamma function (generalized factorial)

S- Applied electric field

X - Characteristic root, eigenvalue
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- Minority carrier mobility
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S - Mean-value, composite Simpson integration routine

p - Fractional derivative oreder, -1 ( p < 1; radius parameter in
polar parameterization of s

- The real part of the Laplace transform variable

T - Integration variable

T - Minority carrier lifetime

- Imaginary part of Laplace transform variable; frequency

- Integrand substitution variable

Z( I - Laplace transform operator
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Abstract

SUMMARY: Feedback of the 1.2 and 3/2 dorivattveo as yeL as X and

x to demonstrated for a second-order system deftned by the differenttat

equatton:
3,2 /12

mx + c D (x) +c x + c D (x) + kx u(t)
i t 2 a t

Three methods of producing the fractional derivative or integral

of an input signal are investigated. The method selected employs a

circuit developed at Trent University, Ontario, Canada for use in

electrochemistry research.- The circuit performs the mathematical

operation d f( ) -or -1 < P < 1; negative values of P represent

integration -The results presented show the circuit accurately

differentiates a sinusoidal input for a frequency range spanning 0.01 Hz

to 10.0 Hz.

(The second-order differential equation above is simulated on

an analog computer. An optimal u(t) is then used for feedback

modification of the original open-loop system. Improved system

performance resulted.

-A Laplace transform method and a Mittag-Leffler expansion provide

analytical predictions of the system's response. The output of the two

methods is identical. Comparison of the theoretical predictions with

the experimental data shows excellent agreement with respect to the

initial transient behavior and asymptotic behavior of the steady-state

response for both the open- and closed-loop systems. ,

xii



FRACTIONAL-ORDER FEEDBACK IN LINEAR SYSTEMS

I. Introduction

d'Vtf(x)] (1)

dt

Members of the scientific and engineering community have little

difficulty in recognizing Eq (1) as the Pth derivative of a function of

the variable x with respect to time. But how many will pose the

question L'Hospital asked Leibniz in 1695, *What if P be one-half ".

Leibnim replied that it will *lead to a paradox', but added, *someday it

would lead to useful consequences* (1:115). (For an historical

development of fractional calculus the reader is directed to

reference 1.)

Fractional derivatives have indeed proven useful in the analysis of

a wide variety of physical systems (2:126). In the context of this

research, fractional derivatives are capable of describing the behavior

of viscoelastically-damped structures (3:348,4:209). The spacecraft and

0

| | •(1)



in their designs. This expanding interest has motivated an

investigation of active control requirements for viscoelastically-damped

systems. The stability of feedback in such systems has been addressed

(3:351). However, implementation of such a control system requires

development of a feedback method (6) and a sensor or instrument capable

of producing the fractional derivative or integral of electrical

signals.

Problem Statement

Current methods of providing the fractional derivative of an input

signal require either digital processing or resistor-capacitor circuit

ladders containing many components. In addition, the resistor-capacitor

circuit ladder is designed for a fractional order of one-half (7:39).

The goal for this research was to produce a general fractional

40 differentiator/integrator which serves as the key component in an active

control system for viscoelastically-damped structures.

Approach

Three parallel areas of investigation were examined in an attempt

to identify a device:

1) Excess charge carriers in doped semiconductors undergo a

0 diffusion process in passing through the semiconductor lattice. Bagley

and Torvik showed fractional derivatives of order one-half are common to

diffusion processes (8:2). The application of a focused monochromatic

* light beam generates a localized excess concentration of charge carriers

(2)



in the semiconductor material and results in voltage changes as the

excess carriers diffuse away from the source (9:54). Measurement of

this voltage might provide a possible source of a fractional derivative.

2) Oldham identified a fractional integrating circuit of order

one-half in his textbook on fractional calculus (10.149). This circuit

has several characteristics which preclude it as an optimum choice.

However, in developing the theory for this circuit, reference was made

to Wall's work in continued fractions which can be used to represent

Laplace transforms of functions (11:355). This method might permit the

development of ladder circuits of fractional order, since s is the

Laplace transform definition of a fractional derivative.

3) Finally a continued investigation of the literature to identify

other scientific fields that might have fabricated or used such a device

for research will be undertaken. Electrochemistry and geophysics are

two fields in which fractional derivatives have found use

(2:126,10:154).

* scope

The desirable attributes of the device include: i) Operation over a

wide range of frequencies (especially .01 to 200 Hz - the frequencies of

interest to many structural engineers), ii) small size, relatively few

components, passive in nature and inexpensive to manufacture, and

iii) generalization to any fractional order.

(3)



Evaluation of device performance will be accomplished in three

phases:

Phase 1. A function generator is used to apply a sinusoidal input

signal of varying frequency to the device. The observed output should

match the expected magnitude and phase behavior of a i/nth-order

fractional differentiator/integrator.

Phase 2. An analog computer simulation of a second-order system

incorporates the device to supply the fractional derivative terms of the

system. Solution techniques for this type of system exist (12,13:141),

and experimental agreement within 10% of the predicted response is

established as the success criteria for this phase.

Phase 3. This thesis parallels the development of optimal

fractional-order feedback theory by Capt Rich Walker (6). The parameters

developed for feedback by application of his modified linear quadratic

regulator will be applied to the system referred to in Phase 2. The

ability of the feedback method to produce improved, stable control

system performance will be the criterion for success in this phase.

Assumptions

This research takes on only proof-of-concept development.

Circuits, if built, will consist of discrete components fabricated on

breadboards. No attempt to use integrated circuit resistors and

capacitors will be made. Perfection of circuits and device operation

will be left as a follow-on task. Feedback will be accomplished through

manual adjustment of attenuators on the analog computer and not through

automatic means. Most systems exhibiting behavior that can be

(4)



modeled with fractional derivatives involve the half-order derivatives.

* Initial investigation will consist of half-order devices that can be

generalized to i/nth-order devices. While many materials exhibit

stress-strain and damping characteristics that can be modeled by

* fractional derivatives, no effort will be made to tie the system

simulated on the analog computer to a physical system, or specific

material.

5
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II. Background

Evolution of Fractional Calculus

Beginning in 1695, when L'Hospital first posed the fractional

derivative question, many noted scientists and mathematicians have

focused their attention toward developing the foundation of fractional

calculus. In 1823 Neils Henrik Abel used fractional calculus to

formulate a solution to the tautochrone problem. This was the first

recorded application of fractional calculus (1:121). Beginning in 1832

Joseph Liouville published several papers dealing with fractional

derivatives (1:116). G.F. Bernhard Riemann developed a theory for

fractional integration which was published posthumously in 1876 (1:116).

But neither Riemann nor Liouville were able to provide definitions for

Eq (1) which could be generalized for any v, positive or negative, and

for a sufficiently wide class of functions. Henri Laurent published

what many consider the foundation paper in fractional calculus in 1884.

In this paper, Laurent produced a definition of fractional operations

which also applied to integer values of v and followed precisely the

rules of integer calculus for differentiation and integration (1:118).

Finally in 1936, with the theory of fractional operations well defined,

Harold T. Davis developed a notation for fractional operations which

will be used throughout the remainder of this paper (1:117):

Lot V be L posttive recL number, cDx- f(x) will denote
integration of order V of function f aLong the x axie from c
to x. Qimitcrty, the operator CDx fX denote. difforentia-
tton of order V with terminal Limits c and x. (itlt)

(6)
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The mathematical interpretation of the integration operator in the

time domain:

I t

D tCf(t)] - f (t-T) - f(r)dr (2)
CL (V) C

One would assume that the definition of fractional differentiation

would involve replacing v by -- in Eq (2). However, this produces a

divergent integral. To obtain a fractional derivative, first integrate

to the correct fractional order between 0 and 1 and then use

conventional differentiation to obtain the desired result:

D V[f(t)] = D m-P (f(t)] d I Xt (t- ) -1) dT (3)C tC td t M (P ) C

Where m is the least integer greater than v, v = m-p, and 0 ( P : 1

(1:116).

Except for a small class of functions, Eqs (2) and (3) are not

computationally convenient to use. However, if both expressions are

treated as convolution integrals, the fractional operators have simple

definitions in the Laplace domain:

X( cDt-f(t) = 5-"(f(t) (4)

X( cDt f(t) ) sm- P( f(t) ) (5)

It is through the use of these Laplace transform operators that

fractional calculus proves to be most useful (2.126).

(7)



Physical Application

Abel used fractional calculus to determine the shape of a wire in a

vertical plane which would cause a bead placed on the wire to take the

same amount of time to reach the lower end no matter where the bead was

originally placed (1:121). In 1921 P.G. Nutting noted stress relaxation

properties in viscoelastic materials could be modeled by fractional

powers of time rather than the traditionally expected decaying

exponential (2:126). This development led A. Gemant in 1938 to propose

time differentiation of fractional order for modeling stiffness and

damping properties of viscoelastic materials (2:126). In 1966,

M. Caputo suggested fractional derivatives might be used to model the

behavior of geological strata (2:126). In 1970, V. 0. Shestopol

employed fractional calculus to describe the mechanism of deformation in

tungsten and platinum at high temperatures (2:126). Other areas of

physical application include creep and stress relaxation, creep

buckling, and techniques for fitting experimental data. (2:126 - This

reference is an excellent source for a historical perspective of the

application of fractional calculus to damping.)

Beginning in 1979, R. Bagley and P. Torvik published a series of

articles developing a method for modeling the behavior of viscoelastic

materials by using fractional derivatives in a finite element

formulation. The stress-strain curve for viscoelastic materials is

dependent, not only on the applied load, but also on the frequency at

which the load is applied. Previous methods of modeling this phenomena

were computationally difficult to use for anything but steady-state

conditions or predicted non-causal behavior -- both of which made

(8)



transient analysis of viscoelastic systems impractical (14.741). Bagley

showed that a fractional derivative model, incorporating three to five

parameters, could be used to accurately describe the behavior of many

viscoelastic materials over a large range of frequencies (2:128).

Approximately 130 materials have been characterized in this manner

(2:130). Subsequent research verified the damping characteristics of

viscoelastic materials could also be modeled in a similar fashion

(15:83). In 1985, Bagley and Torvik showed finite element methods could

incorporate fractional calculus, effectively increasing the usefulness

of fractional calculus to the structural analyst (14:743).

When a model effectively describes a physical system over an entire

range of operating conditions, one might expect the model to also

predict behavior for conditions outside of range tested. One of the

areas of recent interest in engineering is the damping requirements of

large space structures. The excellent damping properties of

viscoelastic materials make them highly suitable candidates for use in

such structures. The space environment cannot be simulated in

ground-based testing. A model that can predict performance outside of

testable conditions is necessary. Bagley and Torvik present a strong

argument for accepting the fractional calculus model as such (2:134).

Requirements for these structures will no doubt include some

combination of active and passive control for station-keeping and other

mission requirements. If viscoelastic materials are integral to these

structures, it seems likely that the control system should include and

adapt the fractional-order model. Three questions immediately arise --

(9)



can fractional orders of displacement be sensed; is there a constitutive

control law for fractional-order feedback in these systems; and, is such

feedback stable ?

Steven B Skaar, et al, addressed the stability of fractional order

feedback in simple physical systems and outlined conditions necessary to

guarantee a stable system (3). The paper discussed the characteristics

of a fractional-order sensor and suggested a circuit comprised of

lead-lag transfer functions (3:355). However, the authors stated more

study was required to develop the idea. In addition, the paper

addressed the form of the feedback control law. The feedback must be a

function of the vibration frequency and must be of the same order as the

equations of motion. In other words, if the material properties are

best described by the one-half and three-halves derivatives, the

feedback should be of the same form (3:356).

Capt Rich Walker went further in his 1988 AFIT Master's Thesis,

defining an optimal linear quadratic feedback control law. His research

showed that linear feedback of the fractional- and integer-order terms

of a second-order system could both improve performance and guarantee

stability. One of the assumptions made in his paper was the existence

of a sensor or device which would provide the fractional-order input

signals to the controller (6).

Summation

Models exist, using fractional derivatives, which accurately

describe and predict the behavior of viscoelastic systems. The use of

viscoelastic systems in large space structures would provide a number of

benefits. A control law exists for feedback control of systems

(10)



containing these viscoelastic materials. This law improves system

performance and produces stable systems. To implement this control law,

a device is required which produces the fractional-order derivative of

an input signal. This is the justification of the work to follow in

this thesis.

Potential Sources of Development

A rigid flat plate on the surface of a Newtonian fluid produces

motion in the fluid which can be described by the diffusion equation

(8:2):

- LI #v (7)

C t ift

v m transverse velocity profile in the fluid

z E vertical distance from the surface of the plate

ct ratio of fluid viscosity to fluid density

t time

Simply stated, the time rate of change of the fluid is proportional

to the second derivative of velocity with respect to distance from the

surface of the plate. Bagley and Torvik show that the solution of this

equation is a fractional derivative of order one-half (8:2). Similar

solutions can be found for other parabolic differential equations. One

would expect that any diffusion process would result in fractional-order

solutions.

The goal is to find a diffusion process where current, voltage, or

charge carriers, excited by an electrical or mechanical signal, diffuse

(11)



S

through some medium. The Haynes-Shockley experiment, circa 1949, is

used to create excess charge carriers in semiconductor materials by the

application of a focused monochromatic light source. These excess

charge carriers then diffuse through the semiconductor lattice and can

be measured at some distance from the source of the excitation (9:56).

One might expect the charge measured to be related to the input source

by some type of diffusion process. This will be one area of

investigation.

Another type of diffusion process provides a second possible device

candidate. Electrochemists analyze solutions for electro-reducible

species with a two-electrode cell configuration. When the potential

(voltage) of one of the electrodes is lowered, electro-reduction occurs

at this electrode which creates a time-dependent faradaic current. The

half-order integral (semiintegral) of this current is proportional to

the bulk concentration of the solution's oxidizer. The first method

used to obtain the semiintegral involved recording the current versus

time response of the system; the result was then digitally processed.

K. Oldham developed a resistor/capacitor ladder circuit that

produced the analog semiintegral when hard-wired into the reduction

apparatus. This inn3vation significantly reduced the sample processing

time of the analysis. Oldham states this technique has now become the

preferred method (7:39). One difficulty with Oldham's circuit is the

number of cells (resistor/capacitor combinations) required to produce an

accurate output. Another is its limitation to half-order fractional

operations, instead of general fractional orders.

(12)
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The theory of continued fractions developed by Wall (11) was

significant in Oldham's development. Use of this theory might possibly

lead to the synthesis of a passive component circuit which will produce

a generalized fractional-order output. This will be the alternative

area of investigation.

(13)



III. Theory

A specialized form of the continuity equation for excess minority

carriers in semiconductors is (9:56):

an n-n Pn Pa 2n (8)
- = - P n -' + D --

at T at ax

where n P excess minority carrier density (free electrons) in
p

p-type semiconductor

n excess minority carrier density at equilibrium

pin minority carrier mobility

C applied electric field

D minority carrier diffusion coefficient

T minority carrier lifetime.

This equation arises from pulsing the semiconductor surface with focused

beam of monochromatic light of the proper wavelength to generate excess

carriers. The term (n p-n po)/T n represents the generation rate per

unit volume due to the excitation pulses. The carrier lifetime, T

represents the average time a minority carrier exists before

recombining with a hole. This parameter is a direct measure of the

number of impurities and imperfections in the semiconductor lattice.

The greater the number of imperfections, the shorter the lifetime.

( 14



The solution to Eq (8):

N X r 2  t (g
n (x,t) / exp - +(4ffD t)t /  4D t T

n n

where N = number of carriers generated per unit volume (9:55).

The term N/(47rD t) is in the characteristic form of the result
n

associated with a half-order derivative operation. However, the

exponential term multiplying it gives a decaying exponential appearance

to the excess minority carrier population. If the exponents could be

set approximately equal to zero, the negative voltage from the free

electrons would be inversely proportional to the half-order derivative

of the number of free electrons generated per unit volume. In an analog

simulation, the strength of the input pulse would be proportional to the

voltage of the input signal. The rate at which the carriers decay at

the measurement point, x, would be related to the half-order derivative

of the input. This criteria requires that two conditions be satisfied

since all the terms in the exponent are positive. That is,

x « 0 (10)

t 2 0.001T

The first condition requires that the charge measurement be made

close to the excitation site. Inserting a probe close to the excitation

site would affect the semiconductor properties, invalidating Eq (8).

Typical lifetimes in silicon and germanium are on the order of 109

seconds (9:849). Thus, the maximum effective time in which to accomplish

the measurement would be 10 seconds. The lowest operating frequency

( 15



of the device would then be in the Megahertz range. Most structural

engineers are interested in frequencies three to four orders of

magnitude smaller than this. Some other method is needed; this

diffusion process is not a suitable candidate.

The ladder circuit, illustrated in Figure 1, which consists of

T-cells composed of resistors and capacitors, closely approximates a

half-order integrator if the number of cells are on the order of

100 (10:154). Several related articles also simulate half-order

operations with simpler circuitry (7:41,16:253). These other methods

were also limited to half-order operations.

n R+I RR R -I Rn_ tR

*In I~n I~- I

R= R= RP= R C = C.= C = C.

Pigur~ 1. T-Cell Ladder Circulf

One reference detailed the representation of certain functions

using continued fractions (11). One function was of particular

interest:

( 16 1



e~du (11)Ce- Uduf :
(1+ zu)Z

1+ Z

• + (a+i) z

I + Zz

The expression on the right hand-side of Eq (11) is called a continued

fraction (11:349). If the following substitutions are made:

u = at (12)
z = (RCs)-

du = sdt

the term on the left becomes:

Se- t dt (RC) 1O e dt
as 1 c* C( C (13)

0 0 C0

This form looks like a Laplace transform. If the substitution

T = RC + t is made, the following transform results:

1RC + t)

From Section II, a is recognized as the Laplace transform of the

fractional derivative of order a.

( 17



The continued fraction, with (RCs)-l substituted for z, is the

impedance expression for the circuit illustrated in Figure 1. For a

given circuit, the impedance relation is written:

i(- z(s) 
(15)

As an example, Figure 2 illustrates an abbreviated version of the ladder

circuit, and the impedance relation becomes:

z(s) R + (16)
a 0

V out

0 0

Figure 2. Abbreviated Ladder Circuit

Dividing both sides by RI and multiplying the fraction by unity gives:

z(s) R-1  = (17)
C 0IO

1+
R C
00

The continued fraction is not yet in the form shown in Eq (11), but

18



by inverting both sides of Eq (17) and substituting Eq (15) for z(s):

i(s)R = = RC(RC) F(l-o g' (18)
I

+c.R C
i0

i
R C
00

But this is true only if the resistors and capacitors in the circuit

have values such that:

f(m+a) 1 r(l+a) (r-i) C (19)R -R ; C -(-)
n-n -(1+a) m! n- (m+a)

where n E the number of cells in the circuit and m goes from 0 to n

This finally produces an expression:

i(s) R = eRC (RC)a nf(1-g) s e(s) (20)

This expression states the voltage drop across the first resistor

is the fractional derivative of the input voltage multiplied by a
mc.

constant. However, the term e is a delay term. If the substitution

is made to transform s into the frequency domain, then for

s=jw (21)

the delay term becomes a function of frequency, implying the phase

shift of the circuit is not constant, but also is a function of

frequency. This circuit was fabricated and tested. The Bode gain plot

had the proper gain slope, but the circuit had a phase shift of 45 ± 5

degrees over less than a decade of frequency.

(19



Further investigation of the literature provided an article

describing a circuit which produced fractional derivative (or

integral) output (17). The authors claimed the circuit operated

successfully in the millisecond to several hundreds of seconds range.

Since frequency is the inverse of time, this performance

characteristic translated into frequencies spanning a range of 0.01 to

1000 Hz. However, the circuit had only been used with constant and ramp

input signals. One of the assumptions used in designing the circuit was

that the input current was constant. Because the circuit is a linear

device, it should be useful in processing sinusoidal signals. Again,

the circuit contains chains of resistors and capacitors, but this time

the cells are connected as illustrated in Figure 3. The following

narrative provides the rationale for why the circuit works:

If an input current ts passed through the network a potentiaL
E (t) .9 generated across the jth pair of components. The
magnitudo of the current is reLated to Lhe component vacLue,

of a. and C. by:

V. M (22)
K.) Ct)

- . j r .
J

which can be inverted (by LapLace trcansformation):

t 
(23)

E.t M -- Ut-T) *xp T dT

j C jJ

T being an integration variabLe. Since i(t) is common to aLL
paLirs it foLLows the potontiaL across the entire cLrcuit to:

t +M (24)
Et) X j T)t-r.Z I -- T dTj:-n C..3 [ 'i ]d

C Cj j C
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SCHEMATIC SYMBOL

R, R, R, I6 R, R, R,

V in Vout R,

C. C, C, CS C4  C, C,

Figure 3. Oldham-Zoski Circuit Schematic

Adjacent resistors are nov stipulatod to differ in value

by a constant factor, as do the capaci.tor values, aLthough

the progress.on ratios are not necees.osriy equal.. Thus:

(25)

. = g-JR 
and C. = C-J(02

0 j 0

vhere 03 and g are geometri.c ratios, both > 1. A parameter 1)

is defined r.Lotng 0 to g:

(26)tn 0

Ln g

and E q (24) can be rocast

Ra t. +N TOj j _ToJiJ

RO i(tt) = x , dT

C r C C0 0 (27)

zn the Limit as n and N approach infinity and 0 and g

approach unity:

( 21 )
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17 CsC(7Tt) ) t

0 _t -T) (28)E(t) = 0- dT
1(1-i))(g) C L-  C TV

0

and by using the Riemann-LiouviLlt definition of a fractional

integraL os in Section 1I (17:27)

P

EM)cc() % dV-1 [i(t) (29)F(IIp tnog 1-i tV-I
r (i-i.'Lnag) C dt0

Therefore, the input voltage is proportional to the integral of the

current through the circuit. From the principle of continuity the input

current equals the output current. If a resistor is connected in series

with this circuit, the voltage across the resistor, E (t) is related to

the input voltage E(t):

tn(Og C° d t]

Er(t) = i(t) R = 7caV1 C (30)RCSC(Prr) R Vdt V

0

The voltage across this resistor is the t/vth derivative of the input

voltage. Additional details of this circuit - henceforth referred to

as the Oldham-Zoski circuit (OZ) - are contained in Appendix E

(including fabrication and interface details).

The theory for simulating a second-order equation, including

half-order terms supplied by the OZ circuit, is developed in Section IV

under the subheading Analog Simulation. Basically, given a set of

initial conditions and a set of coefficients for a second-order system,

the response, as a function of time, can be obtained on the analog

computer.

( 22



Finally, there is a need to evaluate experimental results and be

confident in their accuracy. Two techniques will be used to predict the

theoretical results of the open and closed loop simulations. First, a

Laplace transform method which will be used to evaluate the residues and

a contour integral in the s plane. Second, a Mittag-Leffler expansion

which will be used to expand the homogeneous solution of the differential

equation as an infinite series in the time domain. Details of the

Laplace transform method are included in Appendix A. Appendix C details

the Mittag-Leffler expansion.

( 23 )



IV. Experimental Procedure

Overview

This section details eight distinct tasks:

1) Circuit design and fabrication. The details of realizing the

half-order derivative circuit are presented.

2) Circuit Performance Evaluation. A signal generator was used to

produce a sinusoidal signal of varying frequency as the input to the

half-order circuit. The output of the circuit was compared to the input

signal to ensure the proper phase and magnitude relationships existed.

3) Circuit Gain Adjustment for Analog Simulation. To obtain

a zero amplitude offset of the derivative signal, several operational

amplifiers and a potentiometer were combined with the half-order

circuit.

4) Half-Order Analog Performance Evaluation. A harmonic

oscillator circuit was programmed on an analog computer. Its output was

introduced into the circuit and op amp half-order combinations to ensure

proper phase and magnitude performance.

5) Fractional-Order Equation Synthesis. Using the physical variable

method, a second-order differential equation, including half- and

three-halves order terms, was programmed on an analog computer.

6) Open- and Closed-Loop Simulation. The performance results and

comparison with the analytic prediction are presented. As with all

experiments there were some discrepancies. The source and resolution of

these discrepancies is discussed.

( 24



7) Total-Cycle Simulation. With the system totally at rest, a step

input was introduced into the system to establish the initial conditions

tested. This task identified adjustments to correctly model the

initial-value problem.

8) Final Configuration and Performance Evaluation. The lessons

learned from the total-cycle simulation were applied to an in.tial-value

configuration. The final results are discussed.

This section provides a general functional description of the

procedures used in each task without going into a detailed step-by-step

description of the equipment configuration and operation. Learning to

operate the equipment correctly required a significant effort during

this research. Therefore, where appropriate, references are made to

Appendix F which contains a detailed description of the equipment

configuration and operation.

Circuit Design and Fabrication

For this application a half-order differentiating Oldham-Zoski

circuit will be designed and fabricated. Appendix E details the method

of determining the component values listed in Table 1. This circuit is

shown schematically in Figure 3. Resistors and capacitors within 2% of

the design values listed in the table were used. This is consistent

with the Oldham-Zoski article (17:35). A photograph of the completed

circuits is shown in Figure 4. The as-fabricated component values are

also listed in Table 1. These are not off-the-sheli values, but were

( 25



obtained by serial and parallel combination of discrete components.

This was necessary as the design values were not commercially available.

Trial and error combinations of components were evaluated until a

combination within 2% of the desired value was obtained.

nj.... ......

.............. ...................

... .. ....v I , .--.. ..... . . v . . L t f.........
Fgure 4. Q.dam-..k Cir... t... C.ns.ructed

on Breadboard
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After completion of component selections, the combinations -ere

placed on an E&L Instruments Elite I circuit board and rechecked to

ensure the values matched the measured values. This step is highly

recommended because several combinations were determined to be outside

the tolerance limits when installed. Two circuits were built, Circuit 2

was designed and fabricated with twice the capacitance and half the

resistance of Circuit 1. Circuit 1 was used to provide the half

derivative, and Circuit 2 provided the three-halves derivative in the

analog simulations.

Circuit Performance Evaluation

The simplest criteria to apply in identifying a fractional

derivative of order one-half is its Bode plot. A gain of lOdB per

decade and a constant phase shift of 45 degrees characterizes a

half-order derivative (18:226). Experimentally determining a circuit's

Bode plot requires a sine wave generator, a recording or display device,

and a counter/timer. The method employed connects the output of the

Tektronix function generator (model FG506) to the input of the circuit

under test. The output of the circuit under test is connected to either

a Hewlett-Packard Analog/Digital recorder (model 7090A) or a Tektronix

oscilloscope (model SC504); a Tektronix counter/timer (model DC5OQ)

is connected to the output of the function generator. The output voltage

is then compared to the input voltage, and the gain is calculated.

The gain at a given frequency (w) is given by:

routput vottag .)
GainW = Constant = 20 log1 0 r2 put votag(

(nput 2ottwg

(28 )



The phase shift is calculated by determining the time interval (tps)

between the t-axis crossings of the input and output voltages and

comparing it to the total period (T) of the sine wave as illustrated in

Figure 5.

0

Phase Shift (deg) Igo tps (32)
IT

This procedure is repeated for a number of frequencies in the

performance range of the circuit. The data was then plotted, as

illustrated in Figures 6-9 , and the slope of the gain plot and the

magnitude of the phase plot are compared to the 10dB/decade gain slope

and 45 degree phase shift criteria. A detailed equipment list and test

procedure is contained in Appendix F.

Experimental values of 10 t 1 dB/decade for the gain and 45 ± 5

degrees for the phase shift were established as the initial pass/fail

criteria for the circuit. These values were a first attempt at

establishing such a criteria. Since both circuits tested satisfied this

criteria and performed adequately on the analog computer, these

parameters appear to be a valid performance criteria.
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Circuit Gain and Adjustment for Analog Simulation

The change in gain and phase of the differentiating circuit's

output arises from the mathematical definition of the steady-state

derivative of a sine function:

dy (A sin Wt) AtY Csin(cot - VI/2) (33)

at

When the input amplitude is unity, the magnification factor of the
V

output amplitude with regards to the input amplitude is w - which is a

function of the frequency. If the Oldham-Zoski circuit is to function

as a true differentiator, this amplitude magnification factor at W = 1

rad/sec must be 1v = 1. Figure 6 and Figure 8 show clearly that this

is not the case for either of these circuits. Therefore, both circuits

must be combined with operational amplifiers to ensure that the gain

plot has a value of zero dB at w = I radian/sec.

The Oldham-Zoski article defines relationships for the

amplification required for a given circuit design (17:30). For Circuit

1 a gain of 28.53 (pure number, not dB) was predicted; the gain fdr

Circuit 2 was 13.54. To realize this on the analog computer, two

amplifiers with gains of 10 and a potentiometer in series with each

half-order circuit were required as shown in Figure 10. More

information on the gain calculations for each circuit is contained in

Appendix E.
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ANALOG SCHEMATIC
REPRESENTATION

Figure 10. Operational Amplifier and Oldham-Zoski
Circuit Combination for ox)

Half - Order Circuit Analoo Performance Evaluation

Theory does not always match real life, and verification of the

gains was required prior to simulating a second-order system. A sine

0 wave with w = 1 radian/sec was used to perform the verification. A

harmonic oscillator was programmed with a frequency of 1 radian/sec

(see Figure 11 and reference Appendix F for details regarding the

programming of a harmonic oscillator on the analog computer) . The

oscillator's output served as the input to the half-order circuit being

evaluated. The input amplitude and the output amplitude were plotted

using the Hewlett-Packard A/D recorder ( model 7090A - see Figure 12). A

comparison is made, and adjustments, if necessary, are determined by the

relationship:

0 (34)
actuat output amptLtude 

(

input ampLi t utd justm*nt factor
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Figure 12. Amplitude Validation Circuit Using
Harmonic Oscillator

The initial potentiometer setting for the half-order circuit

was modified by multiplying its value by the adjustment factor. The

process was repeated until the adjustment factor was approximately one.

An example of this process is depicted in Figures 13 and 14.

Although the circuits are tuned to perform correctly at co =

radian/see, their behavior at other frequencies requires evaluation. As

a check, the frequency of the harmonic oscillator was changed to 2= 3.5

radians/sec. From Eq (33) the predicted magnification factor for the

output amplitude at this frequency should be (3.5)1/4 or 1.37. Figure

15 shows the experimental result of 1.35. The combination of this

check, and the original circuit validation, bolstered confidence in the

half derivative circuits prior to attempting the analog simulations.
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It would be desirable if both the a2 and S/2 derivatives could be

obtained by using a single half-order circuit. Using the Oldham-Zoski

circuit to differentiate the c signal to provide D/ 2 (x) , and then
t

connecting the D B-(x) output to a full integer integrator should

produce the D 1.(x) signal. All analog integrators are checked at the
t

factory to ensure their output falls within a range that matches the

performance of the others. Using only one half-order circuit to

provide the signal for both D /2(x) and D9/ (x) eliminates concerns with
t t

performance matching two half-order circuits. To test this concept the

harmonic oscillator was tuned to w = 1 radian/sec, its k signal was

differentiated to obtain D 3,(x), then integrated to obtain D/'2 (x).

This circuit configuration is pictured in Figure 18, and the results are

plotted in Figure 17. The peak-to-peak amplitude for each cycle is

correct, and the phase shift is also correct. However, there is an

underlying ramp in the signal, indicating a bias voltage exists in the

D:/ 2 (x) signal. Several possible causes were identified, (see Section

V) and fixes were implemented. Even then, the ramp could not be

totally eliminated.

Incorporating a second half-order differentiator to produce DL/2 (x)

from the x (displacement) signal solved much of the problem. With the

system configured as shown in Figure 18, the D/2(x) , c, and D 12(x)

signals are shown in Figure 19. The proper relationships now exist.

Section V includes a discussion of the problems associated with using

a single circuit to produce both fractional derivatives.
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Fractional-Order Equation Synthesis

The EAI analog computer (PACE,model TR 48) depicted in Figure

20 is a solid-state second-generation computer. Components available

for patching into simulations include operational amplifiers capable of

summing, inverting, multiplying, and integrating; potentiometers for

precision multiplication; comparators for switching logic; function

switches for applying various input (forcing) functions; and a digital

voltmeter for readout purposes. Each component has input and output

jacks which accept patch cords with banana plug terminations (see Figure

21), permitting interconnection of components for modeling a variety of

systems. Appendix F contains detailed descriptions of these components

and their uses.

R7
0o

FiQure 20. Pace TR48 Analog Computer
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Figure 21. Patch Cords and Input Jacks

A general second-order differential equation containing half-order

derivatives can be written as follows:

mx+ C D'(x) + c ; cn x) + kx = u(t) (35)
2

where

m = system mass

C2 -= viscous damping coefficient

k m system stiffnes coefficient

c I- viscoinertial damping coefficient

c -- viscoelastic damping coefficient

u(t)- system control or forcing function

The x, x, and x terms are acceleration, velocity, and position. The two

additional terms, D /0(x) and D/ (x), are respectively, theaddtina th

three-halves and one-half derivative of position with respect to time.
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* Eq (35) can be rewritten such that the acceleration is a function

of the other terms:

x = f(t) - cD (x)- c A- c i x) (36)

The three-halves derivative can be obtained by differentiating x

or integrating x by order one-half, and is mathematically defined in

the time domain:

d -  I x' (t) r [ .1 , V
Dj () = dt-*I 2  j j J x t - T

+ D S 2 (x(O)) (37)

Likewise tho one-half derivative can be obtained from either k or

x, and it is defined as:

D 1/2 =d-1/2 ['(t)  t.2]-ftkT)(-) T
Dt ) dt /2 -

1/2

+ (x(O)) (38)

The initial conditions on both fractional derivatives are

identically zero according to Bagley (12). The other three time-

dependent quantities in the equation:

t
;I fx(T)d- + ;1(0) (39)

C

t

x fx(T)dT + x(0) (40)
C

and f(t), an arbitrary time-dependent forcing function which is

produced in a separate circuit on the analog computer.
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In addition all terms in Eq (35) can be written using x

: m{ f(t) - c[ I r(1]) fx T) (t- ) d T
C

- c2[ fX(T)dT + (0)

+ a[r(1,2) ]- f[t iir t(~t7 i

t[ t

k f f x(T)dT + (0)] dT (41)

This form of the equation motivates modeling this second-order

system on the analog computer. That is one operational

amplifier acts as x and is a summer into which all the other terms serve

as input. The output of x is then connected to an integrator, which

produces as its output, x. This output is then connected to another

integrator, and its output is x. Use of a half-order fractional

differentiators can produce the Ds/ 2(x) and D1/2(x) as previouslytd t

explained. Thus, all the terms necessary to produce x are available and

the output of the system (x) can be directed to a display or recorder

for observation. A schematic representation of this circuit is found in

Figure 22.

It should be noted the operational amplifiers on the model TR48

are inverting amplifiers. That is the output of the amplifier has the

opposite sign of the input. For example, when i is put through an

amplifier configured as an integrator, the output is - k instead of k.

To obtain the correct signs, both the D/2(x) and " signals must be
t

passed through inverters to obtain the correct sign.
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Each operational amplifier on the TR48 has four input jacks; two

are unity-gain jacks and the other two amplify the input signal by a

factor of ten. These factor of ten jacks will hereafter be denoted xlO.

To provide the correct coefficients (c., c2, c I and k) the output

signal for each derivative term must be connected to a potentiometer

(Figure 23).

Vin V:kVin

I~i

Vin kVin

Fiqure 23. Potentiometer Schematic

and Circuit Symbol
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Each potentiometer is adjustable in i'-'Iooth increments to

provide a specific fraction of the amplitude of the input signal. For

example, if c were 0.2500, the output of the three-halves derivative

would have to be connected to a potentiometer set at 0.2500. However, if

c were 1.2500, the three-halves derivative would have to be connected

to a xlO input jack on the x summer. Specific details for establishing

the proper signs and magnitudes of the coefficients are presented in

Appendix F.

Open- and Closed Loop Simulation

The first task was to determine a set of coefficients that would

result in frequencies within the operational band of the half-order

circuits on hand. At the time the coefficients were developed, the

circuit designed by the continued fraction method was the one under

consideration. This circuit had a frequency range spanning 0.05 to

0.40 Hz. This range was then evaluated to determine a set of open-

and closed-loop coefficients compatible with the circuit's performance.

The equation developed was:

+ 2 (x) + x = u(t) (42)

where u(t) is the control force (zero for the open-loop equation).

It should be noted that this criteria is consistent with the

Bagley-Torvik model for a viscoelastically-damped structure which has a

stress-strain relationship modeled by the addition of a half-order term

(13:137).

( 53



Using the linear quadratic feedback theory developed in Capt

Walker's thesis (8), the optimal feedback for this system was determined

to be:

u(t) = 1.6324 D ,2(x) - 2.891 A + 3.1556 D /2(x) - 0.4142x (43)

resulting in the closed loop equation:

1.6324 D 9 2 (x) + 2.891 i - 1.1556 Di/ 2(x) + 1.4142x = 0 (44)
t t

Figure 24 illustrates a schematic for the open-loop equation, and Figure

25 depicts the schematic for the closed-loop equation.

The initial condition on x for both the open- and closed-loop

cases was originally set at 2.5, volts and in the final stages of the

experiment, it was set at 2.0 volts. Stepping down the -10 volt reference

voltage on the attenuator module, through a potentiometer, then into the

IC jack on the x operational amplifier established this initial

condition. This voltage acts as the initial disturbance for studying the

response of the system. Again, referencing Figures 24 and 25, both

half-order circuits are isolated from the initial conditions by

comparators. When the "oP" button is pushed to start the simulation the

comparators connect the input to the one-half and three-halves-order

circuits. This was accomplished to conform to the necessary initial

conditions established by Bagley for all fractional order derivatives

(12). The analog computer was operated according to the detailed
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description discussed in Appendix F, and the output is recorded on the

Hewlett-Packard recorder (model 7090A). Figure 26 is a sample output;

it illustrates the x response for both the open- and closed-loop

systems.

X(O) 2.0

OFF (IC)

ON

ON (OP)

Figure 24. Open-Loop System with Comparator Isolation
of lX) Input
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Two theoretical methods for predicting the open- and

closed-loop responses were developed in parallel with the experimental

effort. One method involved Laplace transforms, and it is detailed in

Appendix A. The other uses a Miitag-Leffler expansion in the time

domain, and it is detailed in Appendix C. Both methods produced exactly

the same response for the open- and closed-loop cases. Therefore, only

the Laplace transform response will be shown for comparison (Figure 27

for the open-loop and Figure 28 for the closed-loop response). It is

easy to recognize the initial discrepancies between the experimental

results and the theoretical predictions. In the open-loop case the

analytic methods predict a very heavily damped response that never

crosses the horizontal axis and approaches zero from above. The

experimental results crossed the horizontal axis, approached zero from

below and decayed rapidly. The same type of disparity was observed on

the closed-loop system. Although feedback made the system more

responsive, it became necessary to resolve the discrepancy between

theory and experiment.

Total-Cycle Simulation

The previous con'iguration modeled the open- and closed-loop cases

as initial-value problems. This procedure starts with the system at

rest. By using a function switch (described in Appendix F), a step

voltage was applied to the circuit (Figure 29).
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Figure 27. Theoretical Open-Loop Response



2.50

2.00

1.50

V)
-J 1.00
0

CLOSED LOOP RESPONSE

4 0.50
z
0

, 0.00

0 -0.50

-1.00

- 1.50 i , , , 1 1 71 jI-,, j 'I ' " ''i' ' 'II I I 1 1

0.00 10.00 20.00 30.00 40.OC
TIME (SEC)

Figure 28. Theoretical Closed-Loop Response
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The circuit undergoes a transient response, eventually coming

to rest at a displacement value approximately equal in magnitude to the

size of the step function. This steady system state is nearly the same

as that modeled in the original configuration by placing an initial

condition on x. The one difference in this case is that the

fractional-order derivatives are not isolated from their inputs.

When the function switch was toggled, the step function was removed.This

section of the response curve approximates the response modeled by the

theoretical predictions. The result of this total-cycle simulation is

shown in Figure 30. Figure 31, for the open-loop case, and Figure 32,

for the closed-loop case, represent the second half of the Total-Cycle

Simulation. The experimental response compares favorably with that

modeled by the initial-value problems. Section V (Analysis) draws

conclusions concerning the modifications required to the initial-value

problem configuration to more correctly model the initial conditions.
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Final Configuration Performance Evaluation

The final configurations for both open- and closed-loop initial-

value problems are pictured in Figures 33 and 34, respectively. There

are two changes made from the original initial value configuration.

First, both half-order circuits are not isolated, but allowed to charge

their capacitors to whatever value is consistent with their input.

Secondly the x summer was isolated from its input using a comparator

(Appendix F) until the OP" button was pressed. Final results for both

open- and closed-loop cases are compared with the theoretical

predictions in Figures 35 and 38. The minor discrepancies are discussed

in the analysis section.

X(O) 60o

OFF (iC.

ONO XO

ON (01))

Figure 33. Final Open-Loop Configuration
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V. Analysis of Results

Introduction

This section deals only with anomalies and unexpected results

encountered during the research. Tasks which closely matched

theoretical predictions are covered in the conclusion section; it is

sufficient to state they functioned as expected. The discussion is

divided into three parts; problems in the circuit validation, problems

with simulation results, and disadvantages associated with using the

analytical tools. In each area, the problems are defined, possible

causes listed, and solutions presented.

Circuit Validation

The voltage level output from the Tektronix function denerator was

not constant over the frequency range tested. At low frequencies, (0.05

Hz) the output voltage was several volts lower than at higher

frequencies. The function generator is designed to terminate into a 500

impedance load. The Oldham-Zoski circuit impedance is much higher than

this, especially at low frequencies where the majority of the current

passes through the resistors. By placing a 500 resistor in parallel

with the circuit, the impedance remained close to 500 . The variation

of circuit impedance with the frequency at which the circuit was tested

was not observed to adversely affect the performance of the test

configuration. Slight ditferences were noted in the start-up transient

response of the input and output signals as a function of frequency.
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These tranaient characteristics are repeatable for a specific circuit

and frequency. In addition, the amplitude of the input signal remained

between 8.00 and 8.10 volts for all frequencies tested (Appendix G

contains the circuit verification data). These slight variations were

judged to be acceptable.

When using the oscilloscope and counter/timer combination to

determine magnitude and phase angle, the results were not

repeatable to the accuracy desired (±i dB/decade gain slope and ±5

degrees phase shift). The slope of the Bode magnitude plot would vary

from 9.1 to 11.25 dB/decade, and the phase angle varied from 37 to

43 degrees as a function of frequency. The oscilloscope was not

capable of tracking the output of the fractional order circuit using

just one magnitude range. Constant adjustment was required. It became

necessary to check the adjustments twice at each frequency to ensure

that the controls had not been bumped when changing from one channel to

the other. The trigger control on the counter/timer which is tuned to

detect a signal crossing through the zero voltage level was extremely

sensitive. Because of the need for frequent adjustments, the confidence

in these results was low.

It became necessary to attempt verification of the circuit

on the analog computer. The three-halves derivative functioned correctly

on the analog, when implemented. The phase was approximately 43

degrees, and the magnitude could be adjusted correctly. However,

running the output of the three-halves derivative through an integrator to

produce the one-half derivative produced the sinusoid-ramp combination
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illustrated in Figure 17. The peak-to-peak amplitude of the sine wave

had the correct magnitude, but the underlying ramp function indicated a

bias voltage at the input of the operational amplifier.

The source of the bias could not be readily identified. With

visual observation of the phase and magnitude, it was impossible to

determine small biases on the output signal or to observe the transient

adjustment of the circuit to an input signal. To further complicate

matters, the original method of connecting the fractional-order circuit

to the operational amplifier was accomplished by inserting a banana plug

directly into the summing junction of the operational amplifier. This

procedure avoided adding resistance to the circuit by connecting into

one of the input resistors of the operational amplifier. When the

signal passed through the operational amplifier, it produced the

extremely noisy output signal illustrated in Figure 37.

Many possible causes were identified with the original circuit

configuration. First, there was concern with the -ny potential sources

of stray voltages and inductances. The operational amplifiers were not

commonly grounded; this situation enhanced possible ground potential

biases between components. The long patch cords connecting the circuit

board to the analog computer passed in close proximity to the analog

computer's power supply. The long leads on the discrete resistors and

capacitors were not trimmed, resulting in a circuit similar to that

depicted in Figure 38. These items were corrected by grounding the

circuit board and operational amplifiers together, trimming component

leads so that the components were flush-mounted to the circuit-board,
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l -- lots '..

Figure 38. Long Leeds on Discrete Components

and using coax cables to connect the circuit-board to the analog

computer. Reducing the final resistance value in the half-order circuit

by IOKO and patching its output into a XIO input jack (IOKO resistance)

on the operational amplifier, instead of the summing junction, eliminated

the noisy signal.

The most significant change was the use of the Hewlett-Packard

analog-digital recorder (model 7090A) It eliminated problems associated

with the start-up transient. Appendix G contains the plots of the

circuit validation; the start-up transient is seen to be smooth with no

discontinuities. The analog-digital recorder greatly simplified data

collection and analysis; set-ups became routinely simple, and digitized

values of interest on the output plot could be annotated directly on the

plot through the use of a built-in routine.
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The method of supplying the one-half derivative was altered to

eliminate the ramp. A second half-order circuit was constructed with

capacitors having twice the value of the capacitors used in the first

circuit and resistors having half the value of those used in the original

circuit (the time constant remaining the same).

The performance comparisons of the circuits produced an unexpected

result. When second-order effects are considered, a capacitor is

modeled as a lossless capacitance in parallel with a resistance (19).

When combined into a typical Oldham-Zoski cell, the second-order model

then has a capacitance in parallel with two parallel resistances. One

would predict the circuit with the lowest capacitance to be the circuit

with the best phase characteristics. Comparison of Figures 7 and 9 show

this is indeed the case. When designing future circuits an effort

should be made to make the capacitor values as small as feasible. The

use of an impedance bridge to measure the 'quality' of the capacitances

is also recommended.

The circuit produced a phase angle of 43 degrees when connected

to the analog computer, but only 37-38 degrees when measured by th-

oscilloscope and analog-digital recorder. Examination of the input

circuitry on the analog-digital recorder showed a lM resistor connected

in serier with the input. To correct this situation the circuit was

connected to ground, instead of connecting the half-order circuit

directly to the input of the recorder. The recorder was then put in

parallel with the last resistor of the half-order circuit. This

configuration produced a phase angle of 43 degrees.
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Finally, the ramp in the one-half derivative that resulted from

integrating the three-halves derivatives requires analysis. With the

Hewlett-Packard analog-digital recorder, small amplitude biases were

observed in the output of both half-order circuits. The input from the

function generator was also observed to be biased. It appeared this was

the reason for the anomaly. A closer evaluation proved differently.

For example, in the validation plot (Appendix G) for Circuit 1 at

f = 0.1451Hz (2 w = 1) , the ratio of the input amplitude (peak-to-peak)

to the output amplitude is 63.32. However, the ratio of total offset

is:

positive peak j- negative peak INPU

= 22.85

positive peakj - negative peak OUPT(45)
OUTP UT

This analysis indicates only 0.0025 volts of the bias is attributable to

the input bias, while the total bias is 0.007 volts. Using this rough.

first-order method, the actual bias voltage of the circuit is:

(.00 j 002 = 0.00225 volts (46)

The gain of Circuit 1, when connected to the analog is 25.6. This should

result in ar actual bias on the output of the differentiator of 0.060

volts. This value is small when compared with the 2.0-volt initial-

value, but when integrated over time, this value would produce a

significant ramp. The actual calculatiun of the bias voltage required

to produce the ramp observed is:
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-0.07 . 1 -0.013 volts/sec

(45.12 - 99. 88) *

The bias observed was actually much less than that predicted by

this first-order method. It is noted that Circuit 1 is biased positively

while the one-half derivative exhibits a negative bias. The operational

amplifiers involved are inverters; therefore, the bias does have the

correct sign.

Does this bias affect the simulation, and is it an error that

increases with time? The output of the one-half and three-halves

derivatives is connected to the summer and results in an amplitude error

of the opposite sign of the particular fractional derivative; that is

"122
X = -D /2 (x) - D (x) + .... If the one-half derivative is largert

than nominally predicted, and it should be, then x is slightly smaller

than it should be. Thus x is smaller then it would be if the bias was

not there, and the same argument applies to x. When x is differentiated

by the fractional-order circuit the result is a slighty smaller D /1(x)t

input, compared to the case where the bias was not present. In other

words, with feedback, the error is stable and does not grow with time.

Upon completion of the second fractional- order circuit design, the

circuit was connected to the harmonic oscillator for an amplitude check

with w = I radian/sec. The harmonic oscillator's output amplitude was

not stable, and decayed with time. The first thought was to remove the

fractional-order circuit to see if it might be the cause. With this

done, the amplitude continued to decay. Three new operational
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amplifiers were selected, the circuit was rewired, and the problem

persisted, indicating it was not an operational amplifier problem. A

second analog computer was placed into service, thinking the power

supply was bad on the first unit, but the decay still continued. It was

then noticed that everytime someone used a computer-printer in the room,

the voltage would experience a step-function loss of amplitude. Waiting

until the demand decreased on the electrical supply circuit before

operating the analog computer solved the problem. The whole analog

computer functioned better; the potentiometers were not as noisy and

easier to set. The operating schedule was shifted to occur late at

night when the electrical supply was more stable.

Open- and Closed-Loop Simulation Problems

Figure 26 shows the initial open- and closed-loop responses obtained

experimentally. Figures 27 and 28 depict the results predicted for the

simulation by the Laplace transform method. The frequency, amplitude,

and axis crossings vary significantly from that observed experimentally.

A second Laplace transform prediction was made (Figure 39), deleting the

s terms when transforming the half-order derivatives (see Appendix

A). This response was a almost entirely due to the residue, there was

very little contribution from the integral along the branch cut. The

result was in close agreement with the experimental data, however, it

did not agree with the initial-value problem work reported by Bagley

-i/2
(12) which required the s terms.
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The first thought was that the circuit and experimental methods

were incorrect. The second thought was that the s terms in the

Laplace transform method were invalid. After looking at several

possibilities, it appeared that the problem centered on the method of

applying the initial condiLio-r and an understanding of the definition of

a zero initial condition on the half-order circuits.

Two specific applications of initial conditions were in question.

During the gain evaluation phase a decision was made to isolate

the one-half derivative's input until the "OP" button was pressed.

Figure 40 shows the response of the one-half derivative when not

isolated. It appears to require four or five cycles to adjust to the

correct amplitude. Comparison of this response with that of Figure 41,

in which the one-half derivative was isolated with a comparator, led us

to believe that a zero initial condition on the half-order circuits

meant isolation. When isolated, the one-half derivative attains the

correct amplitude in one cycle. For this reason the decision was made

to isolate both the three-halves and one-half derivatives. Secondly,

when a system is at rest at some displacement value, it is expected that

the acceleration would be zero. In the simulation, the x initial

condition of 2.0 volts appeared as -2.0 volts at the summer, indicating

the system was not at rest.

Two test cases were devised to address the problem. In both

cases, the initial displacement was set to zero. In the first case, a

harmonic oscillator with w = 1.585 rad/sec served as the input to the x

summer as a forcing function for the circuit x + x 0 O. The one-half
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* derivative was connected to the displacement (x) output. The response

of the one-half derivative and displacement were recorded.

If a 45 degree phase lag and an amplitude of (1.585) was observed

* for the one-half derivative, the circuit was working correctly. After one

complete cycle, this was the case (Figure 42). This test verified the

circuit and methods used; therefore, the initial required further

* investigation. The comparators were removed from the half derivatives

and x(0) was set equal to zero. The 'Total-Cycle simulation', as

described in the Section IV, was then run. Figures 30 and 31 are

examples of this procedure for the open-loop system and Figure 32 is an

example for the closed-loop. On cne of the runs the *HD* (hold) key was

used to hold the values of the displacement x) operational amplifier at

the upper stationary position. The summer value displayed on the

Digital Volt Meter (DVM) at this point was 0.0000 volts. With the

circuit still on hold, the function switch was then opened, the value of

x changed immediately to the negative of the value of the step function.

The 'OP' button was pressed and the circuit duplicated the second halt

of the total-cycle simulation. Armed with this information x was

isolated from all inputs until pressing the "OP" button closed the

comparator contacts. Neither of the half-order circuits was isolated.

The circuit was reconfigured so the initial condition was again applied

* through the IC jack in the x operational amplifier. Figures 35 and 36

depict the final experimental/analytic comparisons for both the open-

and closed-loop simulations.
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It appears that to function properly in an initial-value

problem simulation the capacitors in the fractional-order circuits must

be charged to a voltage consistent with the initial value of their input

signal. If the initial value of the input to the half-order circuit is

zero, zero initial voltage on the half-order circuit is consistent. If

the initial value of the signal input to the fractional-order circuit is

other than zero, then the initial voltage of the circuit must assume a

voltage consistent with that input voltage.

There was a small, apparently constant, displacement in the

experimental value when compared with the analytical results. If the

absolute value of the displacement varied as the ratio of c3 to k in the

equations, it would indicate a relationship between the displacement and

one-half derivative. However, the magnitude of the displacement does

not seem to vary from the open-loop to the closed-loop situation; it

only changes signs. When not isolated, the D /2(x) initial value is

0.143 volts in the open-loop case and 0.135 volts in the closed-loop

configuration. The net displacement between the experimental and

analytical results is approximately 0.07 volts. This value is nearly

the same magnitude as the circuit bias, but if the bias is the cause,

the value of the displacement should change by a factor of two due to

the change in c . However, the OZ circuit is only an approximation to
1/2

an s transfer function over the frequency range of its design.

Therefore, the long term accuracy of the circuit is dependent on its
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lower frequency limit. Consequently, the results observed are likely to

be the best possible for a circuit with this set of design parameters.

These displacements, in both cases, make the circuit more responsive and

approach zero faster than predicted.This anomaly will be left as an open

issue for follow-on research.

Theoretical Tools

Mittag-Leffler Expansion (Appendices C and D)

The program MITLEFR.DAT, an executable file in Matrixx,

expands the roots of the characteristic equation in an infinite series

to provide the response of the open-and closed-loop systems in the time

domain. For this case the solution was obtained for a second-order

system involving multiples of the half derivative xD /x) ,
t

D'12(x)]. However, it can be used to expand a second-order equation

made up of any I/nth fractional-order terms by entering (N = 2xn) when

prompted. Input parameters are upper and lower time limits for

calculation, actual response start time, coefficients of the

differential equation, and initial conditions for x, x,D x), and

D x). The method is effective for approximately 15 seconds from the

time the response starts. For extended lengths of time, the number

of terms required to obtain convergence of the expansion becomes

excessive. For example, it required 2 hours of run time to evaluate 100

points using 200 terms in the series for the open-loop system. It

required nearly the same amount of time to evaluate 50 points using 400

terms in the closed-loop case
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Laplace Transform (Appendices A and B)

The program RESPONSE is written in Fortran and performs a

contour integration in the complex plane to calculate the time response

* (20:818-824). The current method requires manual calculation of the

residues. In addition, asymptotic approximations to the integrand must

be made to simplify the inversion process. Figure 43 shows a comparison

• of five different selections for the asymptotic limits. Three of the

five trials required twenty minutes of computational time; the other two

required two hours.

The results of the five trials are remarkably close, yet the

processing time can be increased unnecessarily by an improper selection

of limits. Each time an analysis is accomplished for a different set of

• coefficients, the equations for four derivatives of three functions must

be inserted into the proper function routine in the program. The

supporting function routines must be recompiled and then linked with the

• main program for each specific set of equation coefficients (m,c I

c ,k). The Laplace transform method is not limited with respect to

time. If it is necessary to characterize the entire response of a

* specific system, and that system's response lasts longer than 15

seconds, the Laplace method is viable. However, the Laplace transform

method is limited with respect to responses which have Laplace

* transforms.

Additional Commments - Deciding Which Method to Choose

Figure 44 shows a comparison of the two methods; they are identical.

* For initial characterization of a system the Mittag-Leffler should
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* be used since it's easy to implement. For extensive time-domain

analysis the Laplace transform method is preferred.

Why use the analytic tools, if the analog computer is available?

* It was the Laplace transform method which identified the problem with

invalid initial conditions. Figure 45 illustrates a preliminary analog

simulation of the closed loop-system. The sign on the three-halves

* derivative was incorrect. Had it not been for the analytical

prediction, this situation would not have been identified. In the

future, if someone develops a generalized Laplace transform method that

• solves the problem in terms of the coefficients (m,k,...,c ), receives

them as input parameters, and then calculates the residues, the solution

for a given system could be available in twenty minutes. This tool is

* probably quicker than the analog simulation technique. However, both

analog and theoretical methods have special tasks that they're more

efficient at. It's best to improve both methods.
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VI Conclusions and Recommendations

Summary

This thesis demonstrated that analog simulation of differential

equations involving fractional-order derivatives can be performed.

Fractional-order feedback in linear systems is feasible, and the response

is predictable with computer methods. This feedback is stable and

improves system performance. The methods developed are directly

applicable to systems whose behavior can best be described by fractional

derivatives. These methods could provide additional degrees of freedom

for control engineers to improve system performance (12). With

the additional fractional-order time derivatives available for feedback,

response can be tailored to precisely fit the needs of the application

without a loss of system stability.

The Oldham-Zoski circuit provides the '--nth fractional derivative

of an input signal. Previous research indicated the circuit functioned

for constant and ramp input signals, for any fractional integral or

derivative. This investigation demons.rated that this circuit also

performs with a sinusoidal input. Therefore, it is anticipated that

general fractional-order circuits can be designed and fabricated to

cover the frequency range and functional type required by a specific

application.
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The circuits designed and fabricated can not only function as

tools to simulate processes involving fractional derivatives, but they

can also be used to modify traditional sensors for active control

*. systems.

Two analytic tools were developed to predict the experimental

response. Fully functional computer programs were developed for both

methods. Even though the two methods were totally unrelated, the

results generated were indistinguishable. A high degree of confidence

is merited for these analytic tools as they not only described the

response, but they also pre-'icted it.

Areas for Further Study and Development

1) Perform simulation and feedback including higher orders of

fractional derivatives as well as the one-half and three-halves.

Compare the response to the results presented here. Investigate if

the added degrees of freedom produce better system response.

2) Electrical circuit development. Investigate designing

and fabricating the fractional-order circuits using current IC methods.

Determine if the circuit bias is inherent in the design or can be

removed. If it can be compensated for, a single fractional-order

micro-circuit could supply the i/'nth and n+itnth derivative. In addition,

define interface requirements for the circuits, that is power consumption,

impedance matching, etc. If added degrees of freedom are beneficial,

determine the number that can be designed into one integrated circuit.
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* 3) Investigate the steady-state offset of the experimental values.

Determine if a designing a circuit for operating at lower frequencies

produces an improved steady-state response or if the steady-state offset

* observed was a function of the initial charge on the capacitors. One

possibility of testing for this is to run a simulation with a higher

initial charge on the capacitors, and then observe the results.

* 4) Continue development of the Laplace inversion program.

Automate the calculation of residues. Solve in terms of general

coefficients (k,m,c , ..... c,) use the general coefficients as input to

* the function routines.

5) Combine the circuit with an active control system and logic to

control the response of an actual structure. One possibility - see if

the AFIT/ENG (Department of Electrical and Computer Engineering) robotics

laboratory is interested.

6) Investigate the practical limits of frequency range available.

Determine if a circuit designed to operate over two decades of frequency

functions as effectively over those two decades as one designed for six.

7) Within the design frequency range of the circuit the transfer

function's slope is 10 dB/decade with a 45 degree phase shift.

Determine the operating characteristics of the circuit outside its

design range.

8) Without scaling on the analog computer the voltage limits

restrict the magnitudes of voltage that can be used at high frequencies.

Research the necessary modifications to the circuit for t operating

times, where t is a fraction of the actual time.
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*Equipment Improvements

1) A Hewlett-Packard, or similar PC, with an IEEE-488-bus

compatible interface card for connecting to the Hewlett-Packard

* analog-digital recorder (model 7090A). Data from the recorder could be

directly transferred to the PC for analysis. Likewise theoretical plots

could be done on the recorder. The Hewlett-Packard recorder (model

7090A) has additional capabilities when it is interfaced with a PC than

it has in its stand-alone mode.

2) If it is determined to still be more desirable to use discrete

* components, obtain a supply of 1% components.

3) In,.stigate the use of the AFIT Department of Electrical

and Computer Engineering (AFIT/ENG) hybrid analog computer (SIMSTAR).

It is the latest model available, can be programmed through a terminal

using Fortran - as opposed to using patchcords, and has an interface for

external circuitry.
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Appendix A

Laplace Transform Method for Theoretically Predictink Time Response

A general second-order equation for a viscoelastically damped

system can be written:

c3t /2 1.+
mx + cID~ t ) + cj + c R Ix) + kx f(t) (Al)

where x, x*, and x represent acceleration, velocity, and position.

D /.(x) and D 1.(x) are the three-halves and one-half fractional

derivatives. These fractional derivatives aid in providing simple,

causal models of the behavior of analytic systems (2:125-126). ( mx

is an inertial term, c x is viscous damping, and kx is stiffness.

Therefore, D3" 2(x) can be defined as a viscoinertial damping term, and

D /(x) as a viscoelastic damping term.)
t

Open-Loop Example Case

For an example case, let us examine a model of a typical

viscoelastically damped system;

c = c2  f(t) 0 , m = k = I , c. = 2:

x+ 2D () + x 0 (A2)
t

The initial conditions are:

x(O) = A and *(0) 0 (A)

To solve the differential equation, transfer it to the Laplace domain.

Integer-order derivatives transform as usual, but fractional-order
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derivatives transform slightly differently. The mathematical definition

of an m/n t-order derivative contains an integral expression:

D I,,2 (X) (F1-2)- If 15 (t-T) di- (AC)
tLt

and in the Laplace domain (12):

.( D W g (x)} = t 18)9 - x(0)] s - 1/2 (0) (AS)

and the Laplace transform of Eq (A2) becomes:

2 As + 2g 1 2 X-2As-i2 + x =0 (A6)

and solving for I(s)

Az)A( 2s-1/2 WA)
g2 +2I'/2+5 +2 +1I

To obtain the response of the system, one must calculate the

inverse Laplace transform of X(s) (29:818-824,14:141-143):

g ) I f(s)e as (AS)
,-- i~oD

Solving Eq (A8) involves integrating around a closed contour, with

i/2
Eq (A8) as one of the contours (Figure 46). Again, the s terms

make the solution technique slightly different than usual. Mapping the

denominator of Eq (A7) into the s-plane, where s =s , permits the

characteristic equation to be written s + 2s+ 1. The contour integral

1/2
can then either be performed in the s -plane, or remapped back into

the s-plane (21:197-199).
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Figure 46. Contour Integral Definition for the
Laplace Transform Method
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P1
= -1, p -0.5437, p p; 0.7718 ±i1.1151 (A9)

These are the poles, and are then mapped back into the s-plane by the

transformation:

s a~ + j(W

U + iv (AIO)

2 2
Su - v + 2iv

Equate the real and imaginary parts:
2 2

a -V; 2 _ 2iv (All)

The poles in the s plane are now:

p= 1.0, p2= 0.29561, P 3,Sp -0.64777 ±il.72127 (A12)

Normally, poles on the positive real axis indicate an unstable system.

However, in this case, they result from the s-to-s mapping. These poles

originated in the area of the s-plane which did not map onto the

principle sheet of the Riemann surface in the s plane. Their effect on

the system comes from integrating along the branch cut depicted in

Figure 46.

The mathematical expression for the residue theorem is (20:818):

I .[ . I' 2
27i f + f + + f+ f+ f J Z Residue W (A13)

The Laplace inversion integral, Eq (A), is represented by

integration along path 1. Therefore:

2

,t A (s) ) =- -- ~J~J ++ T_ +Residue (AM4

The quantity on the left hand side of Eq (A4) is defined by Eq (A7):
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X(g)e" A (s + 2s - i 2) (AIS)
a2 + 2+2s +1

Wylie defines the residue (20:818):

St

Residue (p ) = R(p) = li( (s - p) A(s)e (A16)
.-4 p

The characteristic equation can be written in terms of its s roots:

s + 2s 1/2 1 (S + 1)(S + 0.5437)(s 1/  0.7718 + il.1151)

* (S I Z
- 0.7718 - il.1151) (A7)

The residue at s p= - -0.647777+ii.72127 is:

B(p) -im

-1/Z (-C. 64777+ t1.72127) t
(a+C. 64777-LI. 172127) A (a + 29 e

£./2 12 1,2 txz
(a + 1) (S + C.5497) (a -C.7719+Li. 1151) (a -0.7719-i..1151)

(A18)

The root at p9 can be written in terms of its half-order factors:

(s + 0.64777-il.72127) = (sI/ + 0.7718-il.72127) (st + 0.7718+il.72127)

(A19)

This results in an expression for the residue:

R ~lim c.(p) = m(p)

-1/2 1/2 (-0. 64777+ i. 72127)t.
A (9 + 20 ) ( + * 0.7718+Lt.1151L) e

1/2 1.2 1/2
(a +1) (9 + 0.5437) (a -O.77is+Lt.1151)

(A20)
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In the limit, this expression becomes:

R(p ) = A (0.14467-iO.1122) e (cos(l.72127t)+i sin(l.72127t)]

(A21)

When combined with the residue from the complex conjugate root at

s = ps= (-0.64777+il.72127), the total system residue is:

R = 2A C 0.14467 cos(1.72127t) + 0.1122 sin(1.72127t)) e (A22)

Which can be simplified even further through the use of phasor notation:

-0. 64777t.
R = 0.73232 e cos(I.72127t - 0.65966) (A23)

For the contour integral (again refer to Figure Al for the paths):

Along path 2, parameterize s = a+ iw by R exp(iO) , where R = a2 +

and 9 = tan-!(w / e):

s = R exp(ie) (A24)

ds = iR exp(ie) de
-i

The limits of integration are from e = a, where a = tan ('/R) to n

and the integral can be written:

A s[R exp(ie) + 2Ri/exp(-iO/z)] exp[Rtexp(iO)] Rexp(ie)
S[R exp(ie)] -+ 2 [R exp(ie)1 /

2 + 1 (A25)

Let the integrand be denoted Z, then:

ri-vl de ?>  ri, del (A M6
* jlI - JI'-' (

also

IR exp(ie) I = IB (cose + isine -- IR I (A27)
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R-"/ exp(-ie/2) JR- /2 cos(a/* ,,-isin( e.. J <  -,,.-28
(A28)

Iexp ER exp(i9t) II Iexp [ (Rcose)t I [ cos(Rtsine) + isin(Rtsine) I I...
... exp ER cos(t)] (A29)

Employing Eqs (A26) - (A29), an approximation to Eq (A25) for large R is:

A_ - (R +2R exp [Rcos($t)I d6 (A30)zrt 0( R2 + 21,2+1zn ~ B 2R +1z

Taking the limit as R - cc :

lim A f (1 + 2R exp [Rcos((t)I de (A31)R-* c ,",, - I + 2R ] 2 S./ 2 + Rd

Examine the exp [Rcos(Ot)] term. For e = 1/2 to n, cosO < 0 and in

the limit the term goes to exp(-oo) or zero. For O < e - M,/2, the term

is approximately equal to exp(rt). As R becomes very large a 2 n./2 and

the integral can be broken into two parts:

A r 7 77/2
lim - -; f exp [Rcos(et)] de + f exp ( A) de (A32)

R-4 OD 17/2 M/2

In the limit, the integral on the left disappears because the exponent

is negative. The integral on the right disappears due to the path

length shrinking to zero in the limit. Thus the contribution of path 2

to the integral is zero. A similar argument can be made for path 6.

On path 4, the radius, p, is shrunk to zero in the limit. Along
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the path of integration, sa o+iw can be parameterized by P and e:

2 2
P CY + W.

aP exp(ie)

ds iP exp(ie) die (A33)

the limits of integration are FT to (-77) and the path integral is written:

- A L f (pexp (i9 )+2 p 2e xp 0i/ t I exp C exp (i )) p exp (i () d
r i d 6

2MJ[ P exp(ie)i -+ 2 1 Pexp 1,1 + 1 (AW4

Again let the integrand be denoted 3, then:

fl3l de ?: fIZ; del (A35)

and

lp exp(ie) I =Ip (cog 9 + isinel :5 Ipl (AM6

P1.2exp(-ie/2) = fP 2 cos(e/z) *isin 9 -'2) 1 : 1P-12 (A37)

lexp [p exp(iet)]I Iexp [ (Pcose)t I [ cos(,tsine) + isin(ptsin6] I ...

Applying Eqs (A35) through (A38) , Eq (AW4 becomes:

A _ T(p 2 +2P 1 12  exp cos('9t)) de (A39)
rr P + 2p/ x
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In the limit as P,+ 0 this expression becomes:

f 0 d 0 (A40)
T

and path 4 does not contribute to the integral.

On path 3, s is parameterized by r exp(in), with the limits on r

going from R to p. When the appropriate substitutions are made:

s = r exp(irt) r r (cos 7T + isin iT) r r

ds = dr exp(in) = -dr
i/2 1/2 172

S = r exp ( i rrz) = ir (A41)
-172 -iZ2 -1/2

= r exp(-i T2) = -ir

and the integral term is then:

A P (-r2 _ 2z-i/d) (A42)
zrttR (rZ+i) i~z£/ 2 exp (-rt) (-dr)

2MfR ( r 2+ 1) +i2r1/ -

but, the denominator must be rationalized:

A fP (-r2 - 2r"11) r2+ 1) -i2r1721 (A43)(-f a -2 172 2 (A4ep3)t)(-r

2 R [( r + 1) +i2r ./2(( r + I) -i2rI / 2

* In the limits as P + 0 and R 4 o :

o a -172
A (r + r + 4 + L2r (

217t 4 2
00 r + 2r + 4r + I

(104)
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Dividing through by i:

A i(r r + 4) (2r c•TT f 4 2 4 ~ 2-ud (A45)
(r Zr +4r +1) (r 2r +4r +1) x

On path 5:

s = r exp(iT) = r (cos n + isin IT) - r

ds = dr exp(iT) = -dr
I*2 IX2 I/2S = r exp(- z/) = -ir
-1/2 - 1/2 -'t Z (A46)s = r exp(-irr/) = ir

and the limits of integration are p to R. Following the same procedure

as used on path 3 produces:

2A JI 4 2 + 4 2 j exp (-rt) dr (A47)
(r +2r +4r +i) (r +2' +4r + )

* The limits of integration on paths 3 and 5 are reversed. Combining Eqs

(A45) and (A47) and using limits of integration from 0 to 00 produces:

00 -1./2
A(r 2P (V (A48)77 4 2 p -t d

0 (r +2r +4r +1)

The total Laplace inversion is then:

-1 -0. 64 77?t
A - i(s) ) = 0.73232 e cos(1.72127t - 0.65966)

A ( 2r >
+ - rp -i;. d (A49)7r J 4 20 (r +2r 2+4r +1)
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The integral in Eq (A49) does not have a simple closed form

solution. Therefore, it becomes necessary to break the integral into

three parts and make asymptotic approximations to the upper and lower
* ~42

intervals. For small r, r + 2r + 4r « I and Eq (A48) can be written:

r
2 r 1 2 exp(-rt) dr

0

The upper limit of integration is determined by a trial and error

process. Agreement between the integrands in Eqs (A48) and (A50) must

be accurate to within three significant digits over the interval of

integration to favorably compare with the experimental data. (Since the

experimental data contained three significant figures). The worst an

* asymptotic approximation could do over the interval of integration would

be to produce a constant error. The difference between the actual

integrand and the asymptotic approximation would then be the error at

the upper limit of integration multiplied by the interval of

integration. If r is chosen to be 0.00025, then:
i

-1/2
-17/2 rr 63.426 and 4 = 63.1824 (A51)r +2rz + 4r +I

and r 0.00025 produces an estimated error over the interval which is

* much smaller than three significant digits. Eq (A50) contains an

exponential term which can be expanded in an infinite series and

-172
combined with the r term:

(106)
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2A *~I 0002 2A' 002-r (i1-

02~r t+ .. )dr 2- Z0 [ -z1) t r

IT ooo* ooo,25

(A52)

Upon performing the integration, Eq (A52) becomes:

2A O (0. 0025) t(A53)

T n=O
n + 1,/2

This series is convergent for t(4000 seconds and it is not anticipated

that the response of the system will last this long.

For large r, an integral which closely approximates the integral

in Eq (A48) is:

2A O r exp(-rt) dr (A54)
fr

2

If a value of 30 is selected for r2 the difference between the integrand

of Eqs (A48) and (A50) is less than 10-  If the same criteria for

approximating the lower limit integral error is applied to this upper

integral, then 30 is a good choice. Section V contains a discussion of

of asymptotic limit selection. It's impossible to perform numerical

integration on Eq (A54), but if the substitution u i/r is made:

1/-s0

2- f u5 -2 exp(-t/u) du (A55)

and Eq (AS0) now becomes:
00

(107)
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(0.005)r -1/2
2 0 0002 + 2A 2 r exp (-rt)_ drIT O n + 1,/Z -1 4 2
r= r (r +2r +4r*1)

I730

28 5 2rA u exp(-t/u) du

0 (A56)

Using a composite Simpson integration algorithm (5:162-167) the

value of the two integral terms in Eq (A56) can be determined to within

a specified error value. For example, the upper integral:

1/30'2AIs" 2  h r ~~x. 4 f (x2 .) + f ( t/3c
u exp(-t/u) du = 1 fii ( + =fi

a j=j J=t

(1/30 - 0) h4 f4 5/2

ou exp(t/u)]Iu=P (A57)

where

h M integration step

P some mean value (from the mean value theorem)

2m the number of integration steps required

f ) the fourth derivative of the integrand.

The last term in Eq (A57) is the error term. To obtain a conservative

integration step for a wide range of times, p is chosen to be close to

the ',,oth end of the interval and t is chosen as small as possible.

This selection produces the largest possible error for the interval for

all time and appears to be a conservative selection.

The same type of composite Simpson integration routine can be used

for the interval from 0.00025 to 30. Appendix B is the Fortran source

code for calculating the response using the method detailed here. The
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program is liberally commented and a detailed description of the input

is included. Using this program, Figure 27 depicts an output plot of

these results.

Closed Loop Example

For the closed loop system the equation to Laplace transform is:

3/2 i2
x - 1.6324 Dt  (x) + 2.891 & 1.1156 D t  x) + 1.4142x = 0 (A58)

* with inital conditions i(O) = 0 and x(O) = A

The details of the procedure will only be summarized for this case.

x . ( x ) = s2 - sx(O) - -C0) = z - As

372 -17 i/ 2 ~ 972
( D t (x)) = s (s- sxCO) - C(0)] = s 3 - As

) C * = sy - x(O) = s9 - A (A59)

172 -17 172 iz -172
D { (x)} = s s - x(O)] = s - As

Substituting back into the equation and solving for 9:

-A (s - 1.6324si"Z + 2.891 - 1.1156a ) (A60)
2 93/2 -1L7

1 1.6324s + 2.891s _ l.11569 + 1.4142

The roots of this characteristic equation in the s-plane are:

PIPI = 0.7892 t il.2346 ; pz, p2 = 0.0270 t iO.8111 (A61)

Mapping these roots back into the s-plane

p ,p = 0.65715 t iO.0438; p2 ,p2
= -0.9014 t il.9487 (A62)
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*The residue at g -0.65715 + iO.0438 is given by the expression:

R () lim [ ...

A (s-1.6324s "'+2.891-l.l1156s-i/ ) (S" +O.027+iO.8111) exp(-st)

0 Cs-0 .7892+il.2346) (g L/_0.78g2-ii.2346) (gi '-0.027+iO.811) I
(A6 3)

Carrying out the calculations and combining the result with the residue

* obtained at p can be shown to produce the residue expression:

R - =2.25721A exp(-0.65715t) cos(0.0438t + 0.74302) (A64)
(p1,pI )

*The residue at p is:

R lrn
(2 04 P

A (s-1.6324gi' 2 +2.891-1.11l56s 112) (g112+g0l .9 14- 94877) exp(-St)

*S (s' 2 -_0 .7892+il.2346) (s1/20.78921il236) (C 1/2 _0. 027+iO.811)

(A65)

which results in the residue:

R 0. 82138A exp(-O.9014t) cog C1.9487t - 1.15255) (A66)

Again, when evaluating the paths for the contour integrals, the

only paths which contribute are paths 3 and 5 and the resulting

integral:

A__0_[2.30854 r 1 -2 1.63425 r- 1]2 exp (-rt) dr(A7
f0 r 4- 3.11727r3 + 7.41348r 2- 6.84149r+2
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Finally, after calculation of the asymptotic approximations the full

equation in the time domain:

x(t) =2.25721A exp(-O.6 5 715t) cos(0.0438t + 0.74302)

+ 0. 2138A exp(-0.9014t) cos (1,9487t - 1.15255)

+ 2.30854A 000.00025 (1.)(-I),

IT o= ( 2n +3)

+ A OD 2.30854 rl 2- 1.63425 r -1/ exp (-rt) dr

IT f0 r1" - 3.11727r a + 7.41348r z - 6.84149r + 2

+ 2.05A f /0u 7/ exp(-.tu) du (A68)
1r

When substituted into the Fortran program, RESPONSE, with the input

parameters listed in Appendix B. the output of this equation is

illustrated in Figure 28.



Appendix B

Fortran Source Code - Laplace Transform Method
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Appendix C

*Mittag - Leffler Expansion Method for PredictinA Time Response

* The Laplace inversion method for analytical prediction of closed-

and open-loop system response agrees closely with experimental results.

The method has drawbacks which ma e alternative methods requiring less

*• up-front work attractive. Up-front work refers to hand calculation of

the residues, calculation of four derivatives of three functions, then

programming these derivatives into the function routines, and finally

* making engineering judgments on the points at which to apply the

asymptotic limit expansions. There are many points at which errors can

be made .in this process. Is there a simpler analytic tool to use?

* The Mittag-Leffler expansion method (12) employs a time-domain

solution technique. Identity relations for D 9(x) , D Wx), and D/ (x)

exist as follows:

D ,/(x) D ./ 2x
Stx

Dt [D tx  (Cl)

£72 i 3Z2Dt [Dt Cx) = Dt x

.'2 3.2(X )  2
* and Dt (D D t x = x

The entire second-order equation can then be written:

mD1/2 DL / 2 (x) ] + ciD/D t'(x)I + c I/D Tx) I + c D Fx) kx u(t)

0 (C2)
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Eqs (Cl) and (C2) can be put together into a set of linear equations in

matrix form:

0 0 o 0 Dt x a o- 0 Dt x

I I

/2W 0 010 Dt 0 -1 a 0 Dt zx
Di / () 0 01 D/2x + =X

t tX- t x

m i Cx 0 0 k X Ut)

(C3)

If the fractional derivative operator, D/2(x) , is replaced by X.,

Eq C3 becomes:

{ 0 o i + ai ] } 0 (C4)0 1 0 0-t 0 0 0 A

rn c c Coo o kI t>
1 2 3-

and if u(t) = 0, the zero state response of the system is

characterized:

[0 0 -1 C 0

0-1 X 0 2  Xo (C5)
- X 0 0

m c X cc+k 0

Now this is an eigenvalue problem and has the same characteristic

equation of the system posed in terms of D1/

mX 4 + c X + c X + c + k = 0 (C6)£ 2 3

Using a root solving routine, such as that contained in Matrix , the

eigenvalues are simply the roots of the characteristic open- or closed-

loop differential equation. The system response can now be posed in

eigenvalue/eigenvector format:

(137)
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Dt x , X2 1, 4

Dtx (t) X1 X X3 X4 at 07
1,/2

Dt x(t) Xi X2 X3 4 a (t)

x(t) i J L a It) LC)

or symbolically:

{ D(t) I = A ] ( A(t) } (C8)

Total system response is the sum of the characteristic behavior

belonging to each root of the differential equation:

4
x~t W .Z a.(t) (09)

and the a .t) is a series expansion:
L

a. t) a.(0) E Xt (CI0)
L i2

( 
C1O

The expansion, E 1 2 is defined:

co
E/(z =WoS z (ClID

1 (i + n/2)

F is the gamma function or generalized factorial. The total

solution is then:

4 c (00 t
x(t) =. o" n" a.(O) 1 (C12)

t=O i=O 1. F( + n/2 )

The a.(O) terms arise from the initial condition vector, ( D(O) ). Fromt

Eq (08) :

9 -1C A(O) : M A ] ( D (O) ) (C 13)

The a (t) terms can be complex numbers. The solution can be

implemented on a mainframe computer using any type of programming

language. However, to implement it on a Z248 PC, one must use the

(138)



macro-programming routines in Matrix to be able to work with complex
x

numbers. These macro-routines are portable to the Matrix versionx

contained on the AFIT Vax mainframes. Appendix D contains the

Matrix routines, files, and instructions for their use. It isx

programmed so the expansion E ,n can be done for any iznth order value

desired. This is accomplished by responding to the prompt fop system

dimension with (2*n). For example, if the second order equation

involved quarter derivatives instead of halves the response would be

[(2)(4)] 8.

(139)
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Appendix D

Matrix 0Code for Mittag :.Leffler Expansion

Page 141 contains the code for MITLEFR.DAT which is an executable file.

To run, execute Matrix x, ensure MITLEFA.DAT (page 142) and MITLEFB.DAT

(page 143) are present on disk, then enter 'EXECUTE E'MITLEFR.DAT].

Follow the prompts.

(10
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//TOUT,XOUT,XERRI:RSPCAL(AZERO,A,J)

/... accept routine control input

INQUIRE TSTART 'INPUT START TIM:
INQUIRE TZERO 'INPUT STIR? TIME OF DESIRED INTERVAL:
INQUIRE TIAX 'INPUT MAX TIM:
INQUIRE EUNPS 'INPUT NUM OF POINTS TO CALCULATE:
INQUIRE IJMITS 'NMUM OF TERMS IN MITLEF SERIES:

I... calculate time increment & getup to correctly define initial tine

TIE=: (TEAX- TZEROAUNIMPTS;
T:TZERO-TINC;
FOR INC=O:MUM....

1establish matrlxx compatible storage index and initial increment values..

IVDX:IC+: 1...
Z120; ...
T=T+TINC; ...

/1if Interval start prior to response start set calcuaiticon time to zero...

IF T<TSTART,TCALC:O;ELSE TCALC=T-TSTART;EKD ....

/set up initial values for gam function...

PRELl.O;PRE2=O.5;LBIT:1;..

Icalculate the first 2 terms in the Mittag-Leffler (ML) series...
/1... use these term as multipliers of the integer and ...

I/ non-integer gamma function term of the M-L series ...

FOR I1:1....

ELAST2():-ZCI)/(SQRT(PI)IPRE2);..
ZX=ZXIZKRO(I)C(ELASTI(I)+ELAST2(I)) ;END,....

Iset up the correct denominator for the next non-integer gamma term..

PRE2=PRE2+ 1

(143)



/I...

// LBIT controls the use of the integer or non-integer gamma function terms...
.I .. .the next loop calculates the j+2 term of the M-L series for each of...

* II the n roots...

FOR J:I:V MITS ....
R=O+JAYTO;...

//...

// calculate the gamma function term and set up for the next loop...* /1...

IF LBIT=I,DEI=PREI;PREI:PREI 1;LBIT=2;...
ELSE DEN=PRE2;PRE2=PRE2fI;LBIT=I;...

END,...

FOR 1:1...

* // multiply the last Integer/non-integer term by z**2/n-1 to get the...
II correct M-L term for the ith root...
I/...

IF LBIT2, ELASTI(I):(ELASTII)IZ(I)112)/DE;...
R=R+AZERO(I)*ELAST(I):...

ELSE ELAST2(1)=(ELAST2(I)*Z(I)*e2)/DEI;...
* R=R+AZERO(I1)ELAST2(I)...

END,...
END,...

I/ ZX represents the sum of the i roots for each term...
I/...

• ZX=ZX+R;...
END,....

I,...

I store the output for each time step...

XOUT (INDX)=REAL(ZX);XERR(INDX)=IMAG(ZX);TOUT(IUIDX)T;...

• END
II..,

// save the data file in a format readable by grapher...
II...

FSAVE 'MITAPP.DAT' TOUT IOUT

RETF

(144)

0



Appendix E

Oldham - Zoski Circuit Design Parameters

A summary of the design and fabrication process involved in

realizing the Oldham-Zoski resistor/capacitor domino-ladder circuit,

which will perform the operation d/dtv on an input electrical Cignal

is presented. The valid range for v:

-I< V < 1(El)

where P less than zero indicates integration.

The basic circuit U. referred to as a domino Ladder and

consistts of a chain of resistors and capacitors, the two
chains being connected at each node as tn Figure 3. Each

rosistor is a constant factor muttiple of its predecessor
as ise each capacitor giving the relationship:

R R 0 and C = C -j  (E2)

where both g and Q are greater than unity.

To proceed select a value of v; then

in a : 9,/z p (E3)

and In g = (i--P) V_ In 0 (i7:91) (E4)

* The rest of the method follows the basic guidelines established in

(17). However, the derivation is put in terms of frequency instead of

time, as was done in the original Oldham-Zoski article. First, a minimum

frequency, f m, is selected for the application (f in Hz). The time

constant of the first resistor-capacitor pair is then:
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R C 0 exp (-3P' /
3

s: sec (E5)

Any combination of resistors and capacitors which produces this time

constant is acceptable. As explained in the analysis section, the

smaller the capacitance values the better. This must be balanced, on the

other hand, by the values of the largest resistors and smallest

capacitors available. If Jul is : 1 , or the frequency range is large,

the design will require more cells than if Jul is small. This could

possibly put a limit on the initial resistance and capacitance values

used. It is also wise to make the tolerance on the components less

than 2%. This appears to guarantee good performance.

To calculate the number of cells required in the domino-ladder,

select a desired upper frequency limit, f " The number of cells

required, N, is then:

N + 1 t [ 5.5 + in( f M f m ) - 3 29] [ln(gG)]-I (E6)

Some enhancements for the high- and low-frequency performance are

available (17:33). To increase the accuracy at high frequencies, modify

the final resistor capacitor pair:
-N -

from RN = Rog to i/2 R - (E7)

C = Co G -N to 2 Co-N

and introducing a final resistor at the output of the circuit:

RN+ R° g N(In g) (E1)

(146)
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Low-frequency performance can be improved by adding an additional

resistor-capacitor pair at the start of the circuit :

iCoG

1"R ( /2+ -) Rc and C_, - (Eg)
[ I'2 + i,- .nr ]

While circuits produced using this method possess the correct Bode

magnitude slope and phase response, the actual gain value at w = 1

requires adjustment to 0 dB. This adjustment depends on:

V fractional order

C Capacitance of the analog circuit interface component

R = Resistance of the analog circuit interface component

R 0 Resistance of the Oldham-Zoski base resistor0

C 0 Capacitance of the Oldham-Zoski base capacitor

On the Pace analog computer (model TR48) there are two possible

interface resistor values, 10K0 and 10OK0. The two interface capacitor

values are O.02,uF and IO.OpF. Figure 47 shows the possible

configurations available to obtain specific fractional differentiator or

integrator values and the corresponding equations to calculate the gains

required for a given circuit. Table 2 contains the calculations of the

gains for the two circuits built for this thesis and compares predicted

and actual gains required. Table 3 details the method of configuring

the operational amplifiers and capacitors to take advantage of the four

different interface components.For further information on the

Oldham-Zoski circuit refer to reference 17.
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Config , EQuation

i i R
E d E

I RC 2 ln(Gg) out d; i2 1n

00

-- ..-.......
I 1CR di

2
*E d

... "I n (Gg) out dt 1i2 Ln

C"/2 i @12

• [ iCR /  Eout = I nSRCo (Gg)3!

1 2 Eout 1 E
0 0 dt

• Figure 47. Analog Interface Configurations for the
Oldham-Zoski Circuit for Different
Fracti onal Operators
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Table 2. Circuit Gains - Predicted Versus Experimental
Oldham-Zoski--Analog Interface Configuration 4

Predicted I I Experimental
RC& aln(Gg)

0

Circuit 1 28.52 25.06

Circuit 2 13.28 11.47

Table 3. Detai15 for Realizing the Four Different Analog Computer
Interface Configurations for the Oldham-Zoski Circuit

CONFIGURATION 1 Input signal to either a x10 terminal on an
operational amplifier (R=10k) or a xl input
terminal (R=100k). Output of the amplifier
is input to the OZ circuit, output of the

OZ circuit is connected to the xIO input
terminal on the amplifier (lOK must removed

0 from the last OZ resistor before connecting.

CONFIGURATION 2 Remove T plug from one of the integrator
modules. Insert 2 pin bottle plugs in the
'O.1(9 and 'SPEC* terminals, and a 4 pin

bottle plug in the "OPR/RESET" bus. In

* this configuration C=10/.. Removing the
bottle plug from the "O.101? area gives
CsWiF. The OZ circuit is connected to the
amplifier as in Configuration 1, The input

to the capacitor is connected to the "SJ"

input terminal, the output is then avail-

able at the '0" terminal. Connect this
• terminal to an input terminal on the oper-

ational amplifier. Use only a 2 pin bottle
plug on the operational amplifier to con-
nect the 'S' and "SJ" terminals.

CONFIGURATION 3 Configure the integrator as in Configura-

tion 2 with the following exception - the

• input to the integrator (capacitor) is the
output signal of the operational amplifier.

The input signal is connected to the input

terminal of the OZ circuit. The output
terminal of the OZ circuit is then con-
nected to the input of the amplifier.

CONFIGURATION 4 Configure the operational amplifier with
• a 4 pin bottle plug (R=IOOK0 . If R=lOK

is desired, use two 2 pin bottle plugs -
one connecting "SJ" and "B' and one con-

necting an output terminal to a x10 input
terminal. The input signal is conneOcted
to the input terminal of the OZ circui t.
The output terminal of the OZ circuit is

• connected to the input of the amplifier.
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Appendix F:

Detailed Experimental Procedure

For each task listed in Section IV this appendix details the

instrumentation configuration used to experimentally gather the data.

It also provides references to equipment manuals should additional

information concerning the equipment be of interest.

Circuit Build

The Tektronix Digital Multimeter (model DM501) (28) and Dynascan

Capacitance Meter (model 820) are required for this step. The scale

on the multimeter should be set to ohms and the proper range selected

for the resistor being measured. A note of caution on the capacitance

meter: as the capacitances get smaller, the offset error becomes large.

Take this into consideration when measuring pF capacitors.

Circuit Test

Equipment Used

The criteria for a fractional derivative of order one-half is

a Bode plot with a slope of 10dB/decade and a constant phase shift of 45

degrees. To determine if this criteria was satisfied by the circuits

fabricated, a function generator, counter/timer, and oscilloscope were

used

(150)
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0 Tektronix Function Generator (model FG506) (24:1-1,1-3).

Capable of producing a 10 volt peak-to-peak sine wave at frequencies from

.001 to 50 MHz when shunted across a 500 impedance load.

• Tektronix Universal Counter/Timer (model DC509) (25:2-1,2-13).

Two channel input, with adjustable trigger voltage for each channel.

Capable of measuring frequency to within lxl0 6 Hz for the frequencies

of interest; period to within X0- sec; and phase difference between

channels to within lxlO sec when triggers are set correctly.

Tektronix Oscilloscope (model SC504)(26:1.1-2.29). Two channel

S display, graticule on the screen capable of representing 0-100% of 5

times the magnitude of the volts/division setting. Resolution is ±2% of

this range. Volts/division settings spanning 5mV to 10V. The unit has

5 adjustable horizontal sweep frequencies.

Using BNC T fittings and coax cables, the function generator

output is connected to Channel A of the counter/timer, Channel I of the

oscilloscope, and the input of the Oldham-Zoski circuit. This circuit

produces an output current which is the fractional derivative of

the input voltage. The voltage across the last resistor is just the

S value of this current multiplied by the value of the resistor. This

voltage is the voltage to be compared with the input voltage. (It is

important to place the output measurement device in parallel with this

5last resistor. Since they are high-impedance devices, very little

current will be required to produce the measurement, whereas a series

measurement would seriously affect the circuit current). The voltage

(151)
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across the last resistor is connected to Channel B of the counter/timer

and Channel 2 of the oscilloscope.

Procedure

The gain of the circuit is defined, in dB, as:

20 log o(Vout/ v) (Fl)

It is not necessary to maintain the same input amplitude over the range

of frequencies tested. However, it leads to the conclusion that the

voltage input to the circuit is not frequency dependent. Since the

performance of the circuit is necessarily dependent on frequency, it

makes the calculation of gain straight forward if the input voltage is

constant.

Without the circuit attached to the function generator, a 500

resistor should be shunted across the output of the function generator,

and then a common connection should be made to ground; this matches the

impedance of the function generator. A sweep across the frequency band

to be investigated (0.01 to 1000 Hz)should be made. The amplitude of

the input voltage on Channel 1 of the oscilloscope should be observed.

If no changes are evident then the assumption can be made that the OZ

* circuit input voltage remains constant. The circuit should be connected

in parallel with the 500 resistor. Since the impedance of the

Oldham-Zoski circuit is several orders of magnitude higher than the 50c

* resistor, the parallel combination will appear as a 50n impedance to

the function generator.
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Amplitude Ratio Determination

The procedure is as follows:

1. Set function generator to a desired test frequency (record)

2. Set counter/timer to frequency and validate the frequency.

3. Ground both channels of the oscilloscope and adjust the zero

position of each channel.

4. Set both channels to DC input coupling

5. Adjust the volts/division reference for each channel to give the

0 maximum deflection without exceeding the 100% mark on the

graticule.

6. If a volts/division change was made, repeat step 2 for the

appropriate channel.

7. Use the chop display mode to look at both signals at once.

8. Use the percent values listed on the left side of the graticule

to record each channel's amplitude as a given percentage of 5x

the value of the volts/division setting for that channel.

Divisions on the left hand side of the graticule are 4% per

minor division, giving accuracies of t2% Use Eq (FI)

to determine the gain for the frequency just tested.
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* Phase Determination

After calculating the gain at a given frequency the following

procedure will determine the phase angle:

. 1. On the counter/timer select the 'PERIOD A* function.

2. Select the desired number of cycles to be averaged together on

the *Averages" selector. Select 1 for frequencies less than

*0.1 Hz, 'Auto" for frequencies up to 1 Hz, and adjust

to stabilize the reading for higher frequencies. Record the

period in the data table being made.

3. Adjust the trigger voltages to provide an accurate evaluator

of the phase shift.

3a) For both channels, ensure the following configuration:

* "SLOPE': both the same

"ATTEN': "xl"

'SOURCE': "Ext"

S"COUPL': AC

Ensure the button on the timer/counter marked 'AUTO TRIG

LEVEL" is not depressed.

3b) Using the multimeter with needle probes, select

'DC VOLTS* and "200 mV, insert the positive lead into

the contact marked 'A - TRIG LEVEL* on the timer/counter

9and the negative lead into the contact marked "COM -

SHAPED OUT'. Adjust the channel A trigger level to as

close to zero as possible on the multimeter readout.
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* Switch the positive lead to 'B - TRIG LEVEL* and repeat

the adjustment for channel B to get the trigger as close

as possible to the value for channel A.

* 4) Select the 'TIME A-+B' function, the phase shift time will

appear in the readout. Record.

5) Calculate the phase shift as follows:

(UTIME A-B'/ Period) * 360 = 4 (degrees) (F2)

6) Record values; repeat gain and phase procedure as required.

Hewlett-Packard HP7O90A Analog Measurement System

Overall circuit performance depends not only on steady-state

performance, but also on start-up transient characteristics. It became

clear that observing the startup transient was a necessity. How long

did it take the circuit to become an efficient fractional

differentiator9

To answer this question, a Hewlett-Packard Analog-Digital

* Measurement Recording System (model 7090A) was obtained and substituted

for the oscilloscope. The recorder is capable of plotting 3 channels of

input data, with a sampling rate of 33 kHz. The model 7090A also has

*three 1000 word-length buffers (one buffer for each channel). Each word

represents a time slice of 1000th of the total time window specified

prior to data recording. After experimenting with this total time

*window, it was observed that three to five cycles of the input sine wave
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* produced a steady-state response of the circuit, and sufficient data to

accurately determine gain and phase shift. The equation used as a guide

for the total time setting:

tttL = 5 cycles C [ I/ ( f H) (F3)

Another feature of the model 7090A is the ability to record data prior

to the start-up of the system. A trigger function represents the actual

* start of the measurement. This trigger can be set internally to occur

at a specific clock time, or it can be controlled externally. By

specifying a duration of pre-trigger recording time, t.., all events

* occurring within tPt seconds prior to the actual trigger event are

recorded. In addition, if t seconds pass after starting to fill thept

buffers without the trigger event occurring, the oldest pre-trigger data

* is written over so that only the latest t seconds of data are retainedPt

in the buffer.. These features allow the actual startup transient of

the circuit under test to be recorded (27:3-1,24).

• The external triggering system of the model 7090A can be accessed

through a BNC fitting on the right-hand side of the unit. The trigger

uses TTL logic, and is activated when the signal level is connected to

* ground. This made fabricating a trigger quite easy. A coax cable was

attached to the trigger input. A short piece of insulated wire, with

one end stripped of insulation, was inserted into the female connector

* (signal) of the BNC fitting at the free end of the cable. To activate

the trigger, the wire was grounded to the shield of the coax cable.

(27:5-1,9).
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After the trigger event, the input channels are recorded until the

buffers are full at time t t . Each buffer recorded can then be

plotted. A special function allows the buffer to be stepped through, one

location at a time. The plotter moves the pen directly over the point

on the plot representing the current storage location; its value is

observable on the LCD display on the plotter. If the point represents a

point of interest, such as a peak in a curve or a zero amplitude, a

function can be selected to mark the point with a "+' and annotate it

with voltage and time values (27:4-1,10).

Determination of Gain and Phase Angle UsinA the Model 7090A

To interface input signals with the model 7090A use banana plugs,

• or a coax cable with a dual banana plug adaptor. Connect the ground of

the device or circuit being measured to the ground jack on the

recorder. Configure the input signal from the function generator into

* channel I of the recorder, and the output of the Oldham-Zoski circuit

into channel 2. Repeat the constant amplitude input voltage check as

previously mentioned. Input values can be observed on the LCD display

*and do not need to be plotted (this was repeated once; the voltage

remained constant over the frequency range).

For a given frequency determine the total time from Eq (Fl) and the

*desired pre-trigger time and input to the plotter. Select channels 1

and 2 for recording. Set the expected voltage for each channel. Set

the frequency generator to the desired value and verify with the
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counter timer. Turn the frequency generator off. This permits

recording of the start-up transient of the fractional differentiator.

Press the *FILL BUFFER' switch; after sufficient time has passed to load

the pre-trigger buffer, turn on the function generator and ground the

trigger wire. After the buffers fill, plot the buffers twice

(27:4-7,8). On one annotate the points of interest on the input

channel. On the other annotate the points of interest for the circuit

output. The points of interest used for the data in Appendix G are the

maximum and minimum points of each cycle and the negative slope time axis

crossings (the LCD display, in the annotation mode, can be invaluable in

selecting these points) (27:4-8).

The period, gain, and phase are calculated as follows:

Period:

FINAL PEAK VOLTAGE TIME (SEC) - INITIAL PEAK VOLTAGE TIME <SEC)

NUMBER OF CYCLES BETWEEN THE PEAK VALUES USED (F4)

Gain:

Z (OUTPUT VOLTAGE PEAUS +JOUTPUT VOLTAGE MINIMUMS 1]/ [# MAXES + MINs]

Z (INPUT VOLTAGE PEAKS + I INPUT VOLTAGE MZNIMUMQ j]/ 1# MAXES + MINS]

(F5)

This method compensates for offsets in the input and output voltages.

Phase Angle (using paired input and output time axis crossings):

(INPUT TIME AXIS CROSSINGS (20c) -2 (OUTPUT TIME AXIS CROSSINGS]

NUMBER OF CROSSINGS EVALUATED * TOTAL PERIOD (F6)
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This method proved much easier and faster than observing the

oscilloscope, counter/timer, and continually making the necessary

adjustments.

Analox Components and Tasks

Figure 20 shows the PACE analog computer (model TR48), with its

three major panel subdivisions - the control and monitoring panel on the

left, the component panel in the center, and the potentiometer

adjustments on the right.

Control and Monitoring Panel (22:1-11)

There are three items of concern for operating the analog computer

on this panel; the multi-colored mode select keys, digital voltmeter

(DVM), and the operational amplifier/potentiometer selector keypad.

First the mode select keys. There are four of interest for the tasks at

hand; "PS', potentiometer set; *IC', initial condition; OP*, operation,

and "HD', hold modes. To select a sp'ecific mode, simply depress the

appropriate key. The amplifier/potentiometer selector keypad simply

selects one of the numbered potentiometers or amplifiers (depending on

whether the "A' or "P" selector is chosen) for display on the DVM.

To view the value of a specific potentiometer used for establishing

the coefficients of the differential equations, depress the "PS" key.

This isolates the potentiometers from their input voltages, giving their

true values in the circuit. Depress the black "P" key, then the

appropriate two-digit potentiometer identifier as listed on the

component panel. The desired value can now be read off the DVM.
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* To view the output value of a specific amplifier in any mode,

depress the 'A* key and appropriate two digit designator of the desired

amplifier as found on the component designator panel. The output of all

O amplifiers is a varying voltage level. The DVM represents this level

as a certain percentage of the computer's reference voltage of 10 volts.

Therefore, when the DVM reads 0.2500, the output of a given amplifier is

* actually 2.5 volts (22:1-11)

When are the different modes used? Use 'PS' mode when setting and

rechecking potentiometer values. The potentiometers have a tendency to

drift, so after a few data runs switch back into the "PS' mode and

recheck the values. Use 'IC' at the completion of a data run, to abort a

run, or to reestablish initial conditions. When in the 'IC' mode, the

*• initial conditions for each operational amplifier and potentiometer can

be viewed on the DVM. This capability is ideal for verifying proper

circuit configuration. After everything is properly configured,

* depressing the "OP" button starts the simulation by activating

the integrators. The 'HD' key freezes all computations at the current

levels and permits observation of intermediate values (22:1-20).

* Located on the center panel of the model TR48 are many components

required to simulate control systems and differential equations. Only

the ones used for the open- and closed-loop simulations will be

• described.
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SumminX, Inversion, and Factor of Ten Multiplication

These functions are provided by the "6.514 Dual DC Amplifier*

(22:3-1). All amplifiers on the model TR48 are inverting amplifiers,

that is, the output voltage is the negative of the input voltage. A

voltage input to the jack labeled *10" produces a negative ten times the

input voltage. If more than one voltage is input to the operational

amplifier, the output is the sum of the input voltages multiplied by the

value of the input jacks used.

Attenuators (Potentiometers)

Without attenuators, precision multiplication would not be

possible. The '42.283 Attenuator Module" (22:2-1) consists of

5, wire-wound resistors and whose resistance is established by the

setting associated with its control dial. The dials are divided into

one ten-thousandths increments. Circuit schematics and flowchart

symbols for the potentiometers are shown in Figure 22. To obtain a

desired voltage, for example 0.8973 x the following procedure applies:

1. Patch the input voltage into the upper terminal of the

potentiometer

2. Patch the output of the potentiometer to the input of the next

device

3. Determine the component identifier of the potentiometer (for

example P07)

4. Depress the "PS* key to go into Potentiometer Set mode

5. Select "P', "0',and "7', using the selection keys
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* 6. Observe the current value of the pot on the DVM

7. Unlock the "P07 dial on the right panel and adjust until

the DVM reads 0.8973

* 8. Lock the dial, making sure the potentiometer value remains the

same

The output of P07 will now be 0.8973 of the value input.

Integrators

The '12.1322 Dual Integrator Network" (22:4-6) produces

the integral of the input voltage with respect to time. Reference the

symbol under "X(O) =2.0", depicted in Figure 34, for the circuit

schematic associated with an integrator. Note the value at the top of

the x integrator, this is the initial condition applied to the

integrator, and is the output of the integrator when in the 'IC" mode.

This value is established with a reference voltage input to the "IC' jack

on the integrator. Again, the integrator is an inverter and

the negative value of this voltage is the initial condition. When placed

in the "OP" mode, the output of the integrator is:

t ( input voltage(t) I dt + IC (F7)
C

Comparator

To successfully interface the model 7090A with the analog computer,

the recorder must receive its input signal at the moment the op button

is depressed on the control panel. As previously discussed, the

model 7090A activates its trigger when the signal voltage is connected

to ground. To correctly patch this logic, the '40.404 Relay Comparator*
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O (shown schematically in the upper right hand corner of Figure 23

isolating the one-half derivative input) is used. The trigger input

signal from the model 7090A recorder is patched into the common terminal

* of the switching relay, the trigger ground into the comparator terminal

marked *-'. The switching voltage required to initiate the trigger

signal is provided at the output of the "0P" bus jack on the

*12.132 Dual Integrator when the "OP" mode is selected. When the computer

is in "IC* mode the output of the "OP" bus jack ! 0. This makes the

output of the comparator positive and the model 7090A trigger signal is

* isolated from ground. When the "0P' mode is selected, the output of the

comparator is negative, closing the connection between signal and

ground.

* Function Switches

On the right-hand panel of the model TR48 analog computer, below the

potentiometer adjustment dials, are five toggle switches. These

* switches are three-position, sin4le-p.e switches connected to the

"12.766 Function Switch Module' (22:2-6). When the switch is moved to

the left, the input is connected to the 'L' output jack. Likewise, the

S"R" contact is closed when the switch is moved to the right. This

switch is useful in connecting different forcing functions to a system

model. In this specific case, several f(t)s could be available for

* switching in and out of the circuit. This switch was used in the

'Total-Cycle Simulation* to apply and remove the input step voltage.
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More detailed information on these components can be found in the

EAI PACE (model TR48) Analog Computer Reference Handbook (22).

Steps for Programming an Example Simulation (23:84+)

For an example simulation set-up, program a harmonic oscillator x

+ x = 0 with an initial condition x(O)=2 .5 To run the simulation:

1) Select three operational amplifiers and 3 potentiometers and

define as follows:

Component Purpose

A01 x

A02 configure as
A03 integrators x

P01 m
P02 k
P03 x(O)

2) Make the following patches:

From To

A01 Output P01 input

P01 Output xl0 A02 input

A02 Output xl A03 input

A03 Output P02 input

-10 Ref on P00-04 module ?03 input

P03 Output A03 IC

* P02 Output xl0 A01 Input

A03 Output HP7000A Channel 1 input

3) Patch the ground jacks for A01, A02, and A03 and the model

7090A Channel 1 grounds together to eliminate floating grounds.

4) Configure the '40.404 Comparator' and model 7090A per the

description under comparators in this appendix.

5) Depress 'PS' selector on the control console

(164)

. .. . ' ', |



6) Turn the model 7090A recorder and the model TR48 analog

computer on

7) Press "Restore Setup' on the model 7090A to establish standard

values. Make desired changes to

Channel I Range

Channel 1 Offset

Trigger Value

Total Time

8) For each potentiometer, press the appropriate component selection

keys. Unlock the associated potentiometer set dials, and establish the

following values on the DVM for each potentiometer:

Potentiometer Value

PO 0.1000

P02 0.1000

P03 0.2500

9) Depress the "IC' mode select button.

10) Select 'A03" for display on the DVM. It should read 2 0.2500

(whatever the setting on P03 was)

11) Press 'BUFFER FILL* on the model 7090A, and allow adequate

time for the pre-trigger buffer to fill

12) Depress 'OP' on the model TR48 analog computer

13) When the 'Buffer Full' light comes on on the model 7090A:

a) Press *IC" on the model TR48 to end the run

b) Insert paper in the model 7090A
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* c) If a grid is desired on the plot

1) Select a pen color with the 'PEN SELECT' button

2) Press *Grid"

* 14) When plotting is complete, annotate the points of interest as

previously mentioned.

The resulting output should be a cosine function with amplitude 2.5

* volts and period (IT.2) Hz. This circuit can be used for the

analog/half-order compatibility verification trial. Similar methods can

be used for simulating other second-order equations. In this simulation

* POI and P02 were not required to obtain the coefficients m and k since

they were both identically equal to 1. The output of A01 and A03 could

have been connected directly to the next component with the same

* results. However, the example provided an exercise for establishing the

proper coefficients for each term.
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Appendix G

Oldaham -Zoski Circuit Validation Data
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* Appendix G

Qidaham -Zoaki Circuit Validation Data
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Table 4. Circuit 1 Performance Validation Data

Frequency (Hz) Gain (dB) Phase (deg)

0.0116 -47.85 44.74

0.0505 -41.71 45.81

0.0963 -38.95 45.76

0.1451 -37.26 47.00

0.1934 -36.03 48.04

0.5102 -31.67 46.53

0.9780 -28.88 45.77

5.042 -22.08 44.16

9.750 -19.36 45.40

Table 5. Circuit 2 Performance Validation Data

Frequency (Hz) Gain (dB) Phase (deg)

0.0107 -38.96 42.18

0.0503 -32.75 50.35

0.0976 -29.34 48.51

0.1470 -27.61 46.97

0.1944 -26.62 44.08

0,5034 -23.53 40.11

0.9900 -21.03 43.20

5.012 -13.89 46.92

9.670 -10.79 46.19
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SUMMARY: Foedback of thO 1.2 and S/2 derivattve as veLt as X and X Le
demonstrated for a seocond-order systom defined by the differenttat
equation:

mx + c D (X) c x + C D (x) + kx = u(t)
it 2 St

Three methods of producing the fractional derivative or integral of
an input signal are investigated. The method selected employs a circuit
developed at Trent University, Ontario, Canada for use in
electrochemistry resarch. The circuit performs the mathematical
operation d V( )/dx for -1 < P ( 1; negative values of v represent
integration. The results presented show the circuit accurately
differentiates a sinusoidal input for a frequency range spanning 0.01 Hz
to 10.0 Hz.

The second-order differential equation above is simulated on an
analog computer. An optimal u(t) is then used for feedback modification
of the original open-loop system. Improved system performance resulted.

A Laplace transform method and a Mittag-Leffler expansion provide
analytical predictions of the system's response. The output of the two
methods is identical. Comparison of the theoretical predictions with
the experimental data shows excellent agreement with respect to the
initial transient behavior and asymptotic behavior of the steady-state
response for both the open- and closed-loop systems.
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